首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wybutosine (yW) is a hypermodified nucleoside found in position 37 of tRNAPhe, and is essential for correct phenylalanine codon translation. yW derivatives widely exist in eukaryotes and archaea, and their chemical structures have many species-specific variations. Among them, its hydroxylated derivative, hydroxywybutosine (OHyW), is found in eukaryotes including human, but the modification mechanism remains unknown. Recently, we identified a novel Jumonji C (JmjC)-domain-containing protein, TYW5 (tRNA yW-synthesizing enzyme 5), which forms the OHyW nucleoside by carbon hydroxylation, using Fe(II) ion and 2-oxoglutarate (2-OG) as cofactors. In this work, we present the crystal structures of human TYW5 (hTYW5) in the free and complex forms with 2-OG and Ni(II) ion at 2.5 and 2.8 Å resolutions, respectively. The structure revealed that the catalytic domain consists of a β-jellyroll fold, a hallmark of the JmjC domains and other Fe(II)/2-OG oxygenases. hTYW5 forms a homodimer through C-terminal helix bundle formation, thereby presenting a large, positively charged patch involved in tRNA binding. A comparison with the structures of other JmjC-domain-containing proteins suggested a mechanism for substrate nucleotide recognition. Functional analyses of structure-based mutants revealed the essential Arg residues participating in tRNA recognition by TYW5. These findings extend the repertoire of the tRNA modification enzyme into the Fe(II)/2-OG oxygenase superfamily.  相似文献   

3.
Noma A  Kirino Y  Ikeuchi Y  Suzuki T 《The EMBO journal》2006,25(10):2142-2154
Wybutosine (yW) is a tricyclic nucleoside with a large side chain found at the 3'-position adjacent to the anticodon of eukaryotic phenylalanine tRNA. yW supports codon recognition by stabilizing codon-anticodon interactions during decoding on the ribosome. To identify genes responsible for yW synthesis from uncharacterized genes of Saccharomyces cerevisiae, we employed a systematic reverse genetic approach combined with mass spectrometry ('ribonucleome analysis'). Four genes YPL207w, YML005w, YGL050w and YOL141w (named TYW1, TYW2, TYW3 and TYW4, respectively) were essential for yW synthesis. Mass spectrometric analysis of each modification intermediate of yW revealed its sequential biosynthetic pathway. TYW1 is an iron-sulfur (Fe-S) cluster protein responsible for the tricyclic formation. Multistep enzymatic formation of yW from yW-187 could be reconstituted in vitro using recombinant TYW2, TYW3 and TYW4 with S-adenosylmethionine, suggesting that yW synthesis might proceed through sequential reactions in a complex formed by multiple components assembled with the precursor tRNA. This hypothesis is also supported by the fact that plant ortholog is a large fusion protein consisting of TYW2 and TYW3 with the C-terminal domain of TYW4.  相似文献   

4.
The presence of tricyclic wyosine derivatives 3′-adjacent to anticodon is a hallmark of tRNAPhe in eukaryotes and archaea. In yeast, formation of wybutosine (yW) results from five enzymes acting in a strict sequential order. In archaea, the intermediate compound imG-14 (4-demethylwyosine) is a target of three different enzymes, leading to the formation of distinct wyosine derivatives (yW-86, imG, and imG2). We focus here on a peculiar methyltransferase (aTrm5a) that catalyzes two distinct reactions: N1-methylation of guanosine and C7-methylation of imG-14, whose function is to allow the production of isowyosine (imG2), an intermediate of the 7-methylwyosine (mimG) biosynthetic pathway. Based on the formation of mesomeric forms of imG-14, a rationale for such dual enzymatic activities is proposed. This bifunctional tRNA:m1G/imG2 methyltransferase, acting on two chemically distinct guanosine derivatives located at the same position of tRNAPhe, is unique to certain archaea and has no homologs in eukaryotes. This enzyme here referred to as Taw22, probably played an important role in the emergence of the multistep biosynthetic pathway of wyosine derivatives in archaea and eukaryotes.  相似文献   

5.
6.
Resistance to cisplatin-based chemotherapy is responsible for therapeutic failure of many common human cancers including cancer of head and neck (HNC). Mechanisms underlying cisplatin resistance remain unclear. In this study, we identified neurofilament light polypeptide (NEFL) as a novel hypermethylated gene associated with resistance to cisplatin-based chemotherapy in HNC. Analysis of 14 HNC cell lines revealed that downregulation of NEFL expression significantly correlated with increased resistance to cisplatin. Hypermethylation of NEFL promoter CpG islands was observed in cell lines as examined by bisulfite DNA sequencing and methylation-specific PCR (MSP) and tightly correlated with reduced NEFL mRNA and protein expression. Furthermore, in patient samples with HNC (n = 51) analyzed by quantitative MSP, NEFL promoter hypermethylation was associated with resistance to cisplatin-based chemotherapy [relative risk (RR), 3.045; 95% confidence interval (CI), 1.459-6.355; P = 0.007] and predicted diminished overall and disease-free survival for patients treated with cisplatin-based chemotherapy. Knockdown of NEFL by siRNA in the highly cisplatin-sensitive cell line PCI13 increased (P < 0.01) resistance to cisplatin. In cisplatin-resistant O11 and SCC25cp cells, restored expression of NEFL significantly increased sensitivity to the drug. Furthermore, NEFL physically associated with tuberous sclerosis complex 1 (TSC1), a known inhibitor of the mTOR pathway, and NEFL downregulation led to functional activation of mTOR pathway and consequentially conferred cisplatin resistance. This is the first study to show a role for NEFL in HNC chemoresistance. Our findings suggest that NEFL methylation is a novel mechanism for HNC chemoresistance and may represent a candidate biomarker predictive of chemotherapeutic response and survival in patients with HNC.  相似文献   

7.
Platinum-based chemotherapy, such as cisplatin, is the primary treatment for human ovarian cancer. However, overcoming drug resistance has become an important issue in cancer chemotherapy. In this study, we performed 2-DE and ESI-Q-TOF MS/MS analysis to identify differential proteins expression between cisplatin-sensitive (A2780S) and cisplatin-resistant (A2780-CP) ovarian cancer cell lines. Of the 14 spots identified as differentially expressed (±over twofold, P < 0.05) between the two cell lines, ten spots (corresponding to ten unique proteins) were positively identified by ESI-Q-TOF MS/MS analysis. These proteins include capsid glycoprotein, fructose-bisphosphate aldolase C, heterogeneous nuclear ribonucleoproteins A2/B1, putative RNA-binding protein 3, Ran-specific GTPase-activating protein, ubiquitin carboxyl-terminal hydrolase isozyme L1, stathmin, ATPSH protein, chromobox protein homolog3 and phosphoglycerate kinase 1. The proteins identified in this study would be useful in revealing the mechanisms underlying cisplatin resistance and also provide some clues for further research.  相似文献   

8.
Although senescence in oncogenesis has been widely studied, little is known regarding the role of this process in chemotherapy resistance. Thus, from the standpoint of enhancing and improving cancer therapy, a better understanding of the molecular machinery involved in chemotherapy-related senescence is paramount. We show for the first time that Mcl-1, a Bcl-2 family member, plays an important role in preventing chemotherapy-induced senescence (CIS). Overexpression of Mcl-1 in p53+ cell lines inhibits CIS. Conversely, downregulation of Mcl-1 makes cells sensitive to CIS. Surprisingly, downregulation of Mcl-1 in p53 cells restored CIS to similar levels as p53+ cells. In all cases where senescence can be induced, we observed increased p21 expression. Moreover, we show that the domain of Mcl-1 responsible for its antisenescent effects is distinct from that known to confer its antiapoptotic qualities. In vivo we observe that downregulation of Mcl-1 can almost retard tumor growth regardless of p53 status, while overexpression of Mcl-1 in p53+ cells conferred resistance to CIS and promoted tumor outgrowth. In summary, our data reveal that Mcl-1 can inhibit CIS in both a p53-dependent and -independent manner in vitro and in vivo and that this Mcl-1-mediated inhibition can enhance tumor growth in vivo.  相似文献   

9.
10.
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition of proteasomal activity and triggering the accumulation of cytosolic Ca2+ by inhibiting the Ca2+-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic Mcl-1 protein.  相似文献   

11.
The N1-methyl-Adenosine (m1A58) modification at the conserved nucleotide 58 in the TΨC loop is present in most eukaryotic tRNAs. In yeast, m1A58 modification is essential for viability because it is required for the stability of the initiator-tRNAMet. However, m1A58 modification is not required for the stability of several other tRNAs in yeast. This differential m1A58 response for different tRNA species raises the question of whether some tRNAs are hypomodified at A58 in normal cells, and how hypomodification at A58 may affect the stability and function of tRNA. Here, we apply a genomic approach to determine the presence of m1A58 hypomodified tRNAs in human cell lines and show how A58 hypomodification affects stability and involvement of tRNAs in translation. Our microarray-based method detects the presence of m1A58 hypomodified tRNA species on the basis of their permissiveness in primer extension. Among five human cell lines examined, approximately one-quarter of all tRNA species are hypomodified in varying amounts, and the pattern of the hypomodified tRNAs is quite similar. In all cases, no hypomodified initiator-tRNAMet is detected, consistent with the requirement of this modification in stabilizing this tRNA in human cells. siRNA knockdown of either subunit of the m1A58-methyltransferase results in a slow-growth phenotype, and a marked increase in the amount of m1A58 hypomodified tRNAs. Most m1A58 hypomodified tRNAs can associate with polysomes in varying extents. Our results show a distinct pattern for m1A58 hypomodification in human tRNAs, and are consistent with the notion that this modification fine tunes tRNA functions in different contexts.  相似文献   

12.
Chemical modifications of transfer RNA (tRNA) molecules are evolutionarily well conserved and critical for translation and tRNA structure. Little is known how these nucleoside modifications respond to physiological stress. Using mass spectrometry and complementary methods, we defined tRNA modification levels in six yeast species in response to elevated temperatures. We show that 2-thiolation of uridine at position 34 (s2U34) is impaired at temperatures exceeding 30°C in the commonly used Saccharomyces cerevisiae laboratory strains S288C and W303, and in Saccharomyces bayanus. Upon stress relief, thiolation levels recover and we find no evidence that modified tRNA or s2U34 nucleosides are actively removed. Our results suggest that loss of 2-thiolation follows accumulation of newly synthesized tRNA that lack s2U34 modification due to temperature sensitivity of the URM1 pathway in S. cerevisiae and S. bayanus. Furthermore, our analysis of the tRNA modification pattern in selected yeast species revealed two alternative phenotypes. Most strains moderately increase their tRNA modification levels in response to heat, possibly constituting a common adaptation to high temperatures. However, an overall reduction of nucleoside modifications was observed exclusively in S288C. This surprising finding emphasizes the importance of studies that utilize the power of evolutionary biology, and highlights the need for future systematic studies on tRNA modifications in additional model organisms.  相似文献   

13.
Pulse selections on a chemotherapy naive squamous lung carcinoma cell line, SKMES-1, with clinically relevant concentrations of taxanes (taxol or taxotere) resulted in the development of a stable taxotere-resistant variant, SKMES-1-Taxotere and an unstable taxol-resistant variant, SKMES-1-Taxol. Both variants exhibited increased invasiveness in vitro. The unstable nature of SKMES-1-Taxol facilitated looking at factors involved in loss of taxol resistance and increased invasion. The taxotere and taxol-resistant cell lines were 5.9-fold and 12.5-fold resistant to taxotere and taxol respectively. Alterations in expression of/or point mutations in tubulin, the main target of taxanes, is a major mechanism or resistance. However, alterations in expression of beta tubulin were not consistent in the taxane-selected variants. Cross-resistance to adriamycin, vincristine and etoposide (VP-16) was consistent with overexpression of P-glycoprotein (P-gp). However, P-gp alone is not sufficient to confer the complete multiple drug resistance phenotype as all cell lines exhibited cross-resistance to 5-Fluorouracil (5-FU) and more than one mechanism has been linked to taxane resistance. There was no correlation between the fall of taxol resistance in SKMES-1-Taxol and P-gp expression indicating the loss in resistance to be independent of P-gp expression. Furthermore, resistance to the other drugs was not unstable in SKMES-1-Taxol suggesting some parallel mechanisms of resistance. Two-dimensional electrophoresis coupled with matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry was used to identify alterations in expression of specific proteins associated with taxane resistance. A large number of differentially regulated proteins were identified in the resistant and invasive variants affecting cellular processes including stress response, protein turnover and cytoskeleton proteins.  相似文献   

14.
Angiogenesis is essential for tumor growth. Since vascular endothelial growth factor (VEGF) represents the main angiogenic factor, the control of VEGF secretion could constitute the most important mechanism to achieve the inhibition of angiogenesis-related processes. High blood concentrations have been proven to correlate with poor prognosis in advanced cancer. In experimental conditions, chemotherapeutic agents such as taxol appeared to inhibit VEGF-induced angiogenesis, while at present there are no data about the influence of chemotherapy on VEGF secretion in cancer patients. This preliminary study was performed to evaluate the effect of taxol therapy on VEGF secretion in advanced cancer patients in relation to the clinical response. The study included 14 patients with metastatic breast cancer who were treated with taxol monochemotherapy (175 mg/m2 i.v. every 21 days for three cycles). Serum levels of VEGF were measured by ELISA in blood samples collected before therapy and at 21-day intervals. The clinical response consisted of partial response (PR) in three and stable disease (SD) in six patients, whereas the other five patients had progressive disease (PD). Abnormally high pre-treatment levels of VEGF were seen in 8/14 patients. VEGF mean values significantly decreased during taxol therapy in patients with PR or SD, whereas no decline was observed in patients with PD. Moreover, the percent of normalization or decline greater than 50% in VEGF levels was significantly higher in patients with PR or SD than in those with PD (5/9 vs. 0/5). This preliminary study would suggest that the efficacy of taxol therapy in metastatic breast cancer - at least in terms of disease stabilization - may be associated with a decrease in VEGF blood levels followed by potential inhibition of cancer-related neovascularization.  相似文献   

15.
Shikonin, a small-molecule natural product which inhibits the activity of pyruvate kinase M2 (PKM2), has been studied as an anti-cancer drug candidate in human cancer models. Here, our results demonstrate that shikonin is able to sensitize human breast cancer cells to chemotherapy by paclitaxel (taxol). Human breast adenocarcinoma MBA-MD-231 cells, which have higher levels of PKM2 expression and activity compared with MCF-7 cells, were selected to study further. The concentrations of shikonin and taxol were first selected at which they did not significantly induce cytotoxicity when treated alone, whereas the combination induced apoptosis. Surprisingly, PKM2 activity was decreased by shikonin, but not by the combination treatment. To identify the potential targets of this combination, human phospho-kinase antibody array analysis was performed and results indicated that the combination treatment inhibited the activation of ERK, Akt, and p70S6 kinases, which are known to contribute to breast cancer progression. Finally, how the combination affects breast cancer cell growth in vivo was tested using a xenograft tumor model. The results indicated that shikonin plus taxol prolonged animal survival and reduced tumor size than the vehicle treatment group. In summary, our results suggest that shikonin has a potential as an adjuvant for breast cancer therapy.  相似文献   

16.
17.
18.
We have screened a collection of haploid yeast knockout strains for increased sensitivity to 5-fluorouracil (5-FU). A total of 138 5-FU sensitive strains were found. Mutants affecting rRNA and tRNA maturation were particularly sensitive to 5-FU, with the tRNA methylation mutant trm10 being the most sensitive mutant. This is intriguing since trm10, like many other tRNA modification mutants, lacks a phenotype under normal conditions. However, double mutants for nonessential tRNA modification enzymes are frequently temperature sensitive, due to destabilization of hypomodified tRNAs. We therefore tested if the sensitivity of our mutants to 5-FU is affected by the temperature. We found that the cytotoxic effect of 5-FU is strongly enhanced at 38 degrees C for tRNA modification mutants. Furthermore, tRNA modification mutants show similar synthetic interactions for temperature sensitivity and sensitivity to 5-FU. A model is proposed for how 5-FU kills these mutants by reducing the number of tRNA modifications, thus destabilizing tRNA. Finally, we found that also wild-type cells are temperature sensitive at higher concentrations of 5-FU. This suggests that tRNA destabilization contributes to 5-FU cytotoxicity in wild-type cells and provides a possible explanation why hyperthermia can enhance the effect of 5-FU in cancer therapy.  相似文献   

19.
The human multiple drug resistance (MDR) gene has been used as a model for human gene transfer which could lead to human gene therapy. MDR is a transmembrane protein which pumps a number of toxic substances out of cells including several drugs used in cancer chemotherapy. Normal bone marrow cells express low levels of MDR and are particularly sensitive to the toxic effects of these drugs. There are two general applications of MDR gene therapy: (1) to provide drug-resistance to the marrow of cancer patients receiving chemotherapy, and (2) as a selectable marker which when co-transferred with a non-selectable gene such as the human beta globin gene can be used to enrich the marrow for cells containing both genes. We demonstrate efficient transfer and expression of the human MDR gene in a retroviral vector into live mice and human marrow cells including CD34+ cells isolated from marrow and containing the bulk of human hematopoietic progenitors. MDR gene transduction corrects the sensitivity of CD34+ cells to taxol, an MDR drug substrate, and enriches the marrow for MDR-transduced cells. The MDR gene-containing retroviral supernatant used has been shown to be safe and free of replication-competent retrovirus. Because of the safety of the MDR retroviral supernatant, and efficient gene transfer into mouse and human marrow cells, a phase 1 clinical protocol for MDR gene transfer into cancer patients has been approved to evaluate MDR gene transfer and expression in human marrow.  相似文献   

20.
转化生长因子β(transforming growth factorβ,TGFβ)与其受体(transforming growth factorβreceptor,TGFβR)结合激活下游信号通路,在肿瘤的发生发展和转移中具有重要意义,且已有迹象表明该通路可能介导肿瘤的化疗耐受.本研究构建了干扰转化生长因子βⅠ型受体(transforming growth factor receptor typeⅠ,TGFβRⅠ)的重组质粒pRNAT-U6.1/TGFβRⅠ-sh1,发现其可在mRNA和蛋白质水平均显著下调TGFβRⅠ的表达,P0.01.后将该干扰质粒转染乳腺癌细胞MCF-7/5Fu、MCF-7、MDA-MB-231、MDA-MB-453,建立了稳定的乳腺癌TGFβRⅠ干扰模型;MTS法检测上述4种细胞模型对5-氟尿嘧啶(5-fluorouracil,5-FU)和紫杉醇(taxol,TAX)的敏感性.结果显示,MCF-7、MCF-7/5Fu和MDA-MB-453细胞在干扰TGFβRⅠ之后对5-FU和TAX敏感性并未发生改变;但是间质表型的MDA-MB-231细胞在干扰TGFβRⅠ之后对5-FU和TAX的敏感性显著增加.由此可见,干扰TGFβRⅠ的表达阻断TGFβ信号通路,进而显著增加间质型乳腺癌细胞对化疗药物的敏感性,这为临床乳腺癌治疗提供了一定的理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号