首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Questions: 1. How does species richness of recipient communities affect Reynoutria invasion? 2. How does Reynoutria invasion change host community structure? 3. Are there any differences in habitat preferences among three closely related Reynoutria taxa? 4. How does the genetic structure of Reynoutria populations change along the course of a river? Location: River Jizera basin, north Bohemia, Czech Republic. Methods: Nine 0.25 km2 plots were chosen along the river. Within each plot all main habitat types were determined and sampled using the Braun‐Blanquet scale to determine the invasibility of various communities. The patches invaded by Reynoutria taxa and surrounding Reynoutria‐free vegetation in the same habitat type were sampled as relevé pairs to compare the composition of invaded and non‐invaded vegetation. In addition, to characterize the genetic structure of Reynoutria populations along the river, 30 samples from different clones were collected. Results and conclusions: 1. The species richness of communities has no influence on the success of Reynoutria invasion in the area studied. The combination of environmental conditions and propagule spread is more important to the invasion success than the number of species in the host community. 2. Reynoutria invasion greatly reduces species diversity. 3. R. japonica invaded more habitat types than R. sachalinensis and R.×bohemica. The hybrid R.×bohemica outcompetes the parental taxa at sites where both taxa co‐occur. 4. Isozyme analysis revealed phenotype variability in the hybrid in contrast to the parental taxa. Different hybrid phenotypes are distributed randomly on the middle and lower reaches of the River Jizera; one of them dominates and the other three occur occasionally. This pattern supports the hypothesis that sexual reproduction occasionally occurs within Reynoutria taxa.  相似文献   

2.
The genus Reynoutria is represented by four taxa in the Czech Republic – R. japonica var. japonica and compacta, R. sachalinensis and R. × bohemica. Using isoenzyme analysis, we determined the degree of genotype variability in all taxa and compared clones of R. japonica var. japonica from the Czech Republic with those from Great Britain. While the rarely occurring tetraploid variety R. japonica var. compacta possesses low variability, the octoploid female clone of R. japonica var. japonica is genetically uniform in the 93 clones sampled and belongs to the same genotype that is present in the whole Europe. R. japonica var. japonica can be fertilized by the pollen of tetraploid R. sachalinensis and a hexaploid hybrid R. × bohemica is produced. In R. sachalinensis, 16 genotypes were found in the 50 clones sampled. R. × bohemica is genetically the most diverse taxon in the study area, with 33 genotypes recorded among 88 clones sampled.  相似文献   

3.

Background  

Japanese knotweed, Reynoutria japonica, is known for its high growth rate, even on adverse substrates, and for containing organic substances that are beneficial to human health. Its hybrid, Reynoutria × bohemica, was described in the Czech Republic in 1983 and has been widespread ever since. We examined whether Reynoutria × bohemica as a medicinal plant providing stilbenes and emodin, can be cultivated in spoil bank substrates and hence in the coalmine spoil banks changed into arable fields. We designed a pot experiment and a field experiment to assess the effects of various factors on the growth efficiency of Reynoutria × bohemica on clayish substrates and on the production of stilbenes and emodin in this plant.  相似文献   

4.
Knowledge about the reproduction strategies of invasive species is fundamental for effective control. The invasive Fallopia taxa (Japanese knotweed s.l.) reproduce mainly clonally in Europe, and preventing spread of vegetative fragments is the most important control measure. However, high levels of genetic variation within the hybrid F. × bohemica indicate that hybridization and seed dispersal could be important. In Norway in northern Europe, it is assumed that these taxa do not reproduce sexually due to low temperatures in the autumn when the plants are flowering. The main objective of this study was to examine the genetic variation of invasive Fallopia taxa in selected areas in Norway in order to evaluate whether the taxa may reproduce by seeds in their most northerly distribution range in Europe. Fallopia stands from different localities in Norway were analyzed with respect to prevalence of taxa, and genetic variation within and between taxa was studied using amplified fragment length polymorphism (AFLP). Taxonomic identification based on morphology corresponded with identification based on simple sequence repeats (SSR) and DNA ploidy levels (8× Fjaponica, 6× F. × bohemica and 4× F. sachalinensis). No genetic variation within Fjaponica was detected. All F. × bohemica samples belonged to a single AFLP genotype, but one sample had a different SSR genotype. Two SSR genotypes of F. sachalinensis were also detected. Extremely low genetic variation within the invasive Fallopia taxa indicates that these taxa do not reproduce sexually in the region, suggesting that control efforts can be focused on preventing clonal spread. Climate warming may increase sexual reproduction of invasive Fallopia taxa in northern regions. The hermaphrodite F. × bohemica is a potential pollen source for the male‐sterile parental species. Targeted eradication of the hybrid can therefore reduce the risk of increased sexual reproduction under future warmer climate.  相似文献   

5.
Habitat patch colonization dynamics and distribution patterns were analysed at a landscape scale in four invasive Fallopia (Polygonaceae) species. Fallopia sachalinensis and F. aubertii were uncommon and population expansion was not evident during the three consecutive years of study. The two most widespread species, F. japonica and F. × bohemica displayed similar habitat selection patterns with ruderal and natural/semi-natural forests favoured. The highest densities of F. japonica and F. × bohemica individuals were at the edge of preferred habitat patches with different patterns of edge selection. Linear network played an important role in species invasion, with 71% of all F. japonica and F. × bohemica occurring within a 10 m buffer of total linear networks (roads, railways, and rivers). However, the buffer represented only 14.5% of the total landscape surface. The rate of population increase was higher for F. japonica (75.8% and 35.2%, in 2002 and 2003, respectively) than for F. × bohemica (63.6% and 0% in 2002 and 2003, respectively) and was largely the result of intra-patch dynamics with low inter-patch colonization. The total surface area occupied by Fallopia clones in the landscape grew by 34.7% over 2 years of the study, with comparable area growth means for F. japonica and F. × bohemica (34.9% and 34.7%, respectively). The hypothesis that F. × bohemica exhibits higher invasive dynamics due to both clonal and sexual reproduction was not supported by our results.  相似文献   

6.
Recently much attention has been paid to genetic aspects of invasive success in Japanese knotweed s.l. One hypothesis to explain the invasive spread of these species is a multiple introduction, which leads to a higher level of genetic diversity in the invaded range. Fallopia japonica is considered to be genetically uniform in Europe, introduced as a single female clone. However, there is some evidence suggesting that invasion history and dynamics differ between Western and Central-Eastern Europe. We used AFLP markers to characterize genetic diversity of three Fallopia taxa that occur in Poland: F. japonica, F. sachalinensis and their hybrid Fallopia × bohemica, growing in so-called ‘homogeneous’ populations, consisting of one taxon and ‘heterogeneous’ populations, composed of the three taxa cohabiting together. No polymorphism, resp. an insignificantly low variability was observed in the ‘homogeneous’ populations. In the ‘heterogeneous’ stands polymorphism was detected within each taxa, with one exception that concerns individuals of F. sachalinensis from a riparian habitat. The highest level of polymorphism was found among individuals of F. × bohemica. The most striking result of our study is the observation of polymorphism between individuals of F. japonica. The AFLP data also showed that F. × bohemica is most diverse when occurring in a heterogeneous configuration with F. japonica and F. sachalinensis in the same habitat. Our results are the first evidence of genetic diversity in F. japonica populations in Central Europe and can implicate the possibility of its multiple introduction in this region or the existence of sexual reproduction of this species.  相似文献   

7.
Franks  Steven J. 《Plant Ecology》2003,168(1):1-11
Garden experiments focused on vegetative regeneration were carried out with four invasive taxa of the genus Reynoutria (R. japonica var. japonica, R. japonica var. compacta, R. sachalinensis and a hybrid between R. sachalinensis and R. japonica var. japonica, R. ×bohemica). Regeneration ability of stems and rhizomes, timing of shoot emergence and biomass production were studied under the following treatments: laid horizontally on the soil surface; placed upright; buried in the soil; floating in water. Two different soils (sand and garden loam) representing contrasting nutrient levels were applied. Differences were found in the capability and speed of regeneration, as well as in the quality of shoots produced. Regeneration from stems was less efficient than that from rhizomes in all taxa except R. sachalinensis. R. ×bohemica exhibits higher regeneration potential (61%) than all other taxa and can be considered as the most successful taxon of the Czech representatives of the genus Reynoutria in terms of regeneration and establishment of new shoots. High regeneration capacity was also exhibited by R. japonica var. compacta (52%). Other taxa showed generally lower regeneration rates (R. japonica var. japonica 39% and R. sachalinensis 21%), but under some treatments the percentage of regenerated segments was high, too. R. japonica var. japonica rhizomes regenerated successfully in all three soil treatments but not in the water. An opposite pattern was found for its stems: they regenerated well if exposed to water treatment but in the soil, they did not regenerate at all. Particular taxa responded to the soil type in a contrasting way. R. sachalinensis and R. ×bohemica regenerated better in loam while the opposite was true in R. japonica var. japonica. R. japonica var. compacta produced the tallest and R. ×bohemica the heaviest and most robust shoots. It is concluded that rhizomes are more crucial than stems for the spread of knotweeds through fragmentation and clonal growth, suggesting the importance of soil disturbance.  相似文献   

8.
While the effects of an invasive alien plant that has become dominant in a community may seem obvious, there are few studies that attempt to understand how impacts vary according to the characteristics of invaders and recipient communities. For this purpose, the vegetation of invaded and non-invaded plots was sampled for eight different invasive species in a variety of habitats within the French continental Mediterranean region. Most of the observed impact variation was species-specific, with greater effects on community-level metrics found for Carpobrotus spp. and Reynoutria × bohemica and lower effects for Amorpha fruticosa, Ambrosia artemisiifolia and Phyla filiformis. Some trends were consistent with competition-driven processes, with higher impact found in the presence of rhizomatous and creeping perennial invasive species compared to annuals, or in habitats with sparse vegetation. The importance of community characteristics such as the cover of the invasive plant or the differences in cover between the invader and the native dominant species confirmed previous results obtained in Central Europe. Therefore, such variables, easy to measure and with a generic value, could be profitably integrated into risk assessment methods to improve the prediction of the most threatened habitats. Beyond the overall decline in species diversity, the presence of some invasive species was associated with significant changes in species composition, with a filtering toward more shade-tolerant and nitrophilous ruderal species. Managers should consider replacement of resident species by species with different ecological preferences together with simple community-level metrics, to decide whether management is justified.  相似文献   

9.
Krebs C  Gerber E  Matthies D  Schaffner U 《Oecologia》2011,167(4):1041-1052
Hybridization has been proposed as a mechanism by which exotic plants can increase their invasiveness. By generating novel recombinants, hybridization may result in phenotypes that are better adapted to the new environment than their parental species. We experimentally assessed the resistance of five exotic Fallopia taxa, F. japonica var. japonica, F. sachalinensis and F. baldschuanica, the two hybrids F. × bohemica and F. × conollyana, and the common European plants Rumex obtusifolius and Taraxacum officinale to four native European herbivores, the slug Arion lusitanicus, the moth Noctua pronuba, the grasshopper Metrioptera roeselii and the beetle Gastrophysa viridula. Leaf area consumed and relative growth rate of the herbivores differed significantly between the Fallopia taxa and the native species, as well as among the Fallopia taxa, and was partly influenced by interspecific variation in leaf morphology and physiology. Fallopia japonica, the most abundant Fallopia taxon in Europe, showed the highest level of resistance against all herbivores tested. The level of resistance of the hybrids compared to that of their parental species varied depending on hybrid taxon and herbivore species. Genotypes of the hybrid F. × bohemica varied significantly in herbivore resistance, but no evidence was found that hybridization has generated novel recombinants that are inherently better defended against resident herbivores than their parental species, thereby increasing the hybrid’s invasion success. In general, exotic Fallopia taxa showed higher levels of herbivore resistance than the two native plant species, suggesting that both parental and hybrid Fallopia taxa largely escape from herbivory in Europe.  相似文献   

10.
Abstract

Viscum album L. ssp. album is semi-parasitic on deciduous trees and shrubs. In order to identify hosts and map the distribution of V. album ssp. album in Croatia and Slovenia, field research was carried out, and herbaria were surveyed. In Croatia and Slovenia, V. album ssp. album occurred on 59 taxa. In Croatia, there were 52 hosts (33 autochthonous and 15 allochthonous species, two cultivars and two hybrids). In Slovenia, there were 25 hosts (21 autochthonous and four allochthonous species). There were 18 hosts common to both countries, 34 hosts were found only in Croatia, and seven hosts only in Slovenia. The hosts belonged to 13 families. The majority of these (19 species) belong to the Rosaceae, followed by Salicaceae, Aceraceae, Betulaceae, Fagaceae, Juglandaceae, Tiliaceae, Hippocastanaceae, Ulmaceae, Oleaceae, Fabaceae, Moraceae and Viscaceae. All hosts have been previously recorded in the literature, except Alnus japonica (Thunb.) Steud., Amelanchier lamarckii F.G. Schroed. and Crataegus nigra Waldst. et Kit. The distribution of this mistletoe was scattered, due to the scattered distribution of hosts, local conditions, movement of bird-vectors, etc. A continuous distribution was found only in part of the distribution area of narrow-leaved ash (Fraxinus angustifolia Vahl).  相似文献   

11.
Impacts of invasive alien plant species are threatening biodiversity worldwide and thus it is important to assess their effects on particular groups of organisms. However, such impacts were studied mostly in case of plant or invertebrate communities and our understanding the response of vertebrate species to plant invasions remains incomplete. To improve our knowledge in this respect, we studied bird communities in riparian vegetation along the rivers with different levels of Reynoutria spp. invasion in the Czech Republic. These findings will be interesting for basic ecology enhancing our knowledge of consequences of plant invasions, as well as for conservation practice. We surveyed understory bird species in 26 vegetation blocks along parts of three rivers running from the Beskydy Mountains in spring 2011. We used principal component analysis to assess vegetation structure of particular blocks and the first axis ordinated the blocks according to the degree of invasion by Reynoutria spp. Using generalized linear mixed-effects models we found that counts of Motacilla cinerea, Cinclus cinclus and Sylvia borin, as well as the total bird species richness, significantly decreased with increasing degree of Reynoutria spp. invasion, while Acrocephalus palustris showed the opposite pattern. These results suggest that Reynoutria spp. impacts negatively on the species strictly bond with river banks and habitats specialists, whereas habitat generalist species like Sylvia atricapilla were not affected. Preference of Acrocephalus palustris for Reynoutria spp. corroborates affinity of this species to large invasive herbs observed also in other studies. Our study showed that Reynoutria spp. invasion can reduce species richness of understory birds in riparian communities. Although the distribution of this plant species is still quite limited in central Europe, our results suggest that its more widespread occurrence could potentially threat some river bank bird species. Therefore, we urge for development of management actions that will act counter the Reynoutria spp. invasion.  相似文献   

12.
Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.×bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16–48% reduction in snail species numbers, and 29–90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities.  相似文献   

13.
Japanese, giant, and the hybrid Bohemian knotweeds (Fallopia japonica, F. sachalinensis and F. × bohemica) have invaded the western USA and Canada, as well as other regions of the world. The distribution of these taxa in western North America, and their mode of invasion, is relatively unresolved. Using amplified fragment length polymorphisms of 858 plants from 131 populations from British Columbia to California to South Dakota, we determined that Bohemian knotweed was the most common taxon (71 % of all plants). This result is in contrast to earlier reports of F. × bohemica being uncommon or non-existent in the USA, and also differs from the European invasion where it is rarer. Japanese knotweed was monotypic, while giant knotweed and Bohemian knotweed were genetically diverse. Our genetic data suggest that Japanese knotweed in western North America spreads exclusively by vegetative reproduction. Giant knotweed populations were mostly monotypic, with most containing distinct genotypes, suggesting local spread by vegetative propagules, whereas Bohemian knotweed spreads by both seed and vegetative propagules, over both long and short distances. The high relative abundance and genetic diversity of Bohemian knotweed make it a priority for control in North America.  相似文献   

14.
The invasion of NW Europe by a single clone of male-sterile Fallopia japonica var. japonica by purely vegetative reproduction has demonstrated that reproduction by seed and the genetic diversity associated with it may not be an essential feature of plant invasions, at least in the short term. What is less well known is that a significant proportion of the Japanese Knotweed s.l. involved is not F. japonica var. japonica, but the hybrid between it and F. sachalinensisF. × bohemica. This hybrid is able to backcross to either parent with the potential to replace the missing male F. japonica; by the same process, the hybrid is generating the genetic diversity so conspicuously lacking in F. japonica. In terms of understanding the population structure in a particular country, it is important to be able to identify hybrids and putative back-crosses. We bring together a mixture of published and unpublished information to provide a comprehensive section on morphological and anatomical aids to identification. Regeneration of plants from stem and rhizome fragments varies by taxon, as do responses to control techniques, underlining the importance of correct identification of these plants. In this paper we look closely at this group of taxa, with special emphasis on the role played by hybridization, with an examination of the genetic make up of seedlings produced in the wild or by artificial hybridizations, and the implications that this will have on the future directions of the invasion process.  相似文献   

15.
I conducted an exhaustive literature review on Japanese knotweeds s.l. (including Reynoutria japonica, R. sachalinensis and R. ×bohemica), especially on the effects of these invasive plants on biodiversity and ecological processes or the chemical and physical characteristics of invaded habitats. A total of 44 studies have been published, the earliest in 2005, in peer-reviewed journals. Most studies were conducted in Europe, the others in the USA. Invasive knotweeds have major negative impacts on native plants, while the abundant litter produced and the deep rhizome system alter soil chemistry to the benefit of the invaders. However, the effects of knotweeds on other groups of species vary, with a combination of losers (soil bacteria, most arthropods and gastropods, some frogs and birds) and winners (most fungi, detritivorous arthropods, aquatic shredders, a few birds). This literature review highlights significant knowledge gaps of the effects of knotweeds on biodiversity (vertebrates) and ecological processes (ecohydrology). To what extent knotweed invasions have an impact on the population dynamics of native plants and animals on a regional to national scale remains to be verified. Although there is some evidence that knotweed invasions have negative effects on the environment, the research to date remains modest and a more extensive effort is needed to better define the environmental impacts of these plant invaders.  相似文献   

16.
In disturbed habitats, shade often has facilitative effects on plants by ameliorating water and thermal stresses. Facilitation by shade tends to increase as water availability decreases. At the same time, several studies have suggested that facilitation by shade is not affected by water status or collapses under extremely dry conditions. We hypothesized that traits of beneficiary plants, specifically, the flexibility in the allocation of biomass between shoots and roots, would mediate variation in the relationship between facilitation by shade and water status. To test this hypothesis, we examined the responses of two bog species to shade under various water conditions in a post-mined peatland. The seeds of Rhynchospora alba and Moliniopsis japonica were sown under three water levels (dry: 53% peat water content, wet: 77%, and control: 71%) × two shading levels (50% shaded and unshaded). The survival, biomass, and biomass allocation between the shoots and roots of the two species were monitored for two years. Shade increased the survival and biomass of both species. However, the facilitation of R. alba by shade was independent of water level, whereas the strength of the facilitative effects on M. japonica increased as water content decreased. R. alba preferentially allocated biomass to roots under dry conditions and was highly drought tolerant. M. japonica did not alter the allocation of its biomass in response to either shade or water level and was drought intolerant. Our results suggest that flexibility in biomass allocation of beneficiary plants mediates occurrence patterns of facilitation by shade along a water gradient. The facilitation of species with inflexible biomass allocation by shade through the amelioration of water stress increases as water availability decreases, whereas the facilitation of species with flexible biomass allocation is independent of water status. Such species-specific facilitation would promote the coexistence of diverse species in a community.  相似文献   

17.
We have examined morphological and chromosomal variation inFallopia sect.Reynoutria in Korea to clarify their taxonomic identities and to determine whether their morphological variability is associated with ploidy levels. Principal components analysis (PCA) of individuals from 21 populations, using major distinguishing characters, revealed the presence of four major entiries of sect.Reynoutria in Korea; these includeF. sachalinensis, F. japonica var.japonica, F. forbesii, and the Nonsan population consisting of presumed hybrids. Based on morphology, it is hypothesized that the Nonsan population was probably derived from multiple hybridization events involving the three named taxa. The results also indicate thatF. forbesii is distinct fromF. japonica var.japonica. Polyploidy is more prevalent in sect.Reynoutria than has been previously recognized.Fallopia sachalinensis in Korea occurs as dodecaploids with 2n=132; our count is the first dodecaploid count for the species, and represents the highest chromosome number known in the genus.Fallopia japonica var.japonica occurs as tetraploids (2n=44), hexaploids (2n=66), and octoploids (2n=88), whileF. forbesii occurs as hexaploids (2n=66) and octoploids (2n=88); our counts appear to be the first reported chromosome numbers forF. forbesii. Morphological analysis indicates that there is no apparent correlation between the ploidy levels in these taxa and the morphological characters that we have considered in this study except that the tetraploids ofF. japonica var.japonica tend to have somewhat thicker leaves.  相似文献   

18.
Japanese knotweed s.l. comprises Fallopia japonica, F. sachalinensis, F. × bohemica and any F2s or backcrosses. The parental taxa were introduced from the East to the West as garden ornamentals in the nineteenth century, and soon spread beyond the confines of the garden to become widespread and persistent weeds. Since only female F. japonica var. japonica was introduced, its impressive spread has occurred solely by vegetative means. However, the initial lack of genetic variability has been complemented by an extensive series of hybridisations in the adventive range. We examine the history, spread, reproductive biology and ecological impact of these species in the West. The role and importance of polyploidy and hybridisation in their invasion of the West is discussed, as are the implications of these factors for the potential further evolution of the group.  相似文献   

19.
《Comptes Rendus Palevol》2014,13(3):147-155
The Rheic Ocean was a major oceanic domain between Baltica, Laurentia, Perunica and Gondwana in Ordovician-Silurian times. The cosmopolitan nepiomorphian bivalves Praecardioidei Newell, 1965 and Antipleuroidei Kříž, 2007 are characteristic of the Silurian of Perunica, peri-Gondwana, and Baltica, and occur also in Laurentia and Siberia. The Bohemian-type bivalve Cardiolinka Kříž, 1981 (Nepiomorphia Kříž, 2007, Cardiolidae Hoernes, 1884), from the Late Silurian of the Bahar-1 well core, has been found for the first time in southeastern Turkey. The strata containing the species Cardiolinka bohemica (Barrande, 1881) occur in the middle part of the Dadaş Formation in the interior Petroleum District X-Siirt of the northern parts of the Arabian Plate. The cosmopolitan species C. bohemica was until now known from the Latest Ludlow to Pridoli of the Prague Basin, France, Carnic Alps, Sardinia, East European Platform (Poland), eastern Serbia, Moesian Platform, and Arctic Canada. The new surprising subsurface data on C. bohemica in Diyarbakır-Bismil area (southeastern Turkey) therefore represent another piece of evidence in favour of strong faunistic affinity between Perunica, peri-Gondwanan Europe and the northern Gondwana margin.  相似文献   

20.
Three invasive Fallopia taxa are present in Belgium: F. japonica (FJ), F. sachalinensis (FS) and their hybrid F. × bohemica (FB). FS is the least invasive of the three taxa. In this study, we compared the taxa, in sites where they co-occur, for differences in functional traits that might influence their competitive ability and invasiveness—shoot height and ramification, leaf size, specific leaf area (SLA) and foliar nitrogen (N) concentration. The three taxa exhibited similar growth kinetics and similar SLA. However, FS differed in its architecture and allocation of leaf area, having less ramified shoots and a steeper gradient of decreasing leaf size along the main shoot. Also, FS had greater foliar N and less efficient N resorption from senescing leaves. These traits values may result in lower competitive ability of FS for light and nitrogen. For the same traits, FB was generally intermediate between FS and FJ, but often closer to the latter. FB was more variable than FS and FJ, possibly due to larger genetic variation. SLA and ramification varied greatly amongst sites for all taxa, due in part to plastic response to contrasting light regimes. Variation in functional traits values may in part explain the variation in invasiveness amongst the members of the Fallopia complex in Belgium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号