首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide excision repair (NER) is a universal DNA repair mechanism found in all three kingdoms of life. Its ability to repair a broad range of DNA lesions sets NER apart from other repair mechanisms. NER systems recognize the damaged DNA strand and cleave it 3', then 5' to the lesion. After the oligonucleotide containing the lesion is removed, repair synthesis fills the resulting gap. UvrB is the central component of bacterial NER. It is directly involved in distinguishing damaged from undamaged DNA and guides the DNA from recognition to repair synthesis. Recently solved structures of UvrB from different organisms represent the first high-resolution view into bacterial NER. The structures provide detailed insight into the domain architecture of UvrB and, through comparison, suggest possible domain movements. The structure of UvrB consists of five domains. Domains 1a and 3 bind ATP at the inter-domain interface and share high structural similarity to helicases of superfamilies I and II. Not related to helicase structures, domains 2 and 4 are involved in interactions with either UvrA or UvrC, whereas domain 1b was implicated for DNA binding. The structures indicate that ATP binding and hydrolysis is associated with domain motions. UvrB's ATPase activity, however, is not coupled to the separation of long DNA duplexes as in helicases, but rather leads to the formation of the preincision complex with the damaged DNA substrate. The location of conserved residues and structural comparisons with helicase-DNA structures suggest how UvrB might bind to DNA. A model of the UvrB-DNA interaction in which a beta-hairpin of UvrB inserts between the DNA double strand has been proposed recently. This padlock model is developed further to suggest two distinct consequences of domain motion: in the UvrA(2)B-DNA complex, domain motions lead to translocation along the DNA, whereas in the tight UvrB-DNA pre-incision complex, they lead to distortion of the 3' incision site.  相似文献   

2.
The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved multifunctional DNA double‐strand break (DSB) repair factor. Mre11–Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50NBD (nucleotide‐binding domain) in complex with Mre11HLH (helix‐loop‐helix domain), AMPPNP, and double‐stranded DNA. DNA binds between both coiled‐coil domains of the Rad50 dimer with main interactions to a strand‐loop‐helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double‐strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP‐bound state.  相似文献   

3.
RecQ helicases feature multiple domains in their structure, of which the helicase domain, the RecQ-Ct domain and the HRDC domains are well conserved among the SF2 helicases. The helicase domain and the RecQ-Ct domain constitute the catalytic core of the enzyme. The domain interfaces are the DNA binding sites which display significant conformational changes in our molecular dynamics simulation studies. The preferred conformational states of the DNA bound and unbound forms of RecQ appear to be quite different from each other. DNA binding induces inter-domain flexibility leading to hinge mobility between the domains. The divergence in the dynamics of the two structures is caused by changes in the interactions at the domain interface, which seems to propagate along the whole protein structure. This could be essential in ssDNA binding after strand separation, as well as aiding translocation of the RecQ protein like an inch-worm.  相似文献   

4.
Nucleotide excision repair (NER) is a highly conserved DNA repair mechanism. NER systems recognize the damaged DNA strand, cleave it on both sides of the lesion, remove and newly synthesize the fragment. UvrB is a central component of the bacterial NER system participating in damage recognition, strand excision and repair synthesis. We have solved the crystal structure of UvrB in the apo and the ATP-bound forms. UvrB contains two domains related in structure to helicases, and two additional domains unique to repair proteins. The structure contains all elements of an intact helicase, and is evidence that UvrB utilizes ATP hydrolysis to move along the DNA to probe for damage. The location of conserved residues and structural comparisons allow us to predict the path of the DNA and suggest that the tight pre-incision complex of UvrB and the damaged DNA is formed by insertion of a flexible beta-hairpin between the two DNA strands.  相似文献   

5.
Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity.  相似文献   

6.
The Mre11–Rad50–Nbs1 (MRN) complex is a central factor in the repair of DNA double‐strand breaks (DSBs). The ATP‐dependent mechanisms of how MRN detects and endonucleolytically processes DNA ends for the repair by microhomology‐mediated end‐joining or further resection in homologous recombination are still unclear. Here, we report the crystal structures of the ATPγS‐bound dimer of the Rad50NBD (nucleotide‐binding domain) from the thermophilic eukaryote Chaetomium thermophilum (Ct) in complex with either DNA or CtMre11RBD (Rad50‐binding domain) along with small‐angle X‐ray scattering and cross‐linking studies. The structure and DNA binding motifs were validated by DNA binding experiments in vitro and mutational analyses in Saccharomyces cerevisiae in vivo. Our analyses provide a structural framework for the architecture of the eukaryotic Mre11–Rad50 complex. They show that a Rad50 dimer binds approximately 18 base pairs of DNA along the dimer interface in an ATP‐dependent fashion or bridges two DNA ends with a preference for 3′ overhangs. Finally, our results may provide a general framework for the interaction of ABC ATPase domains of the Rad50/SMC/RecN protein family with DNA.  相似文献   

7.
RecQ helicases are key genome maintenance enzymes that function in DNA replication, recombination, and repair. In contrast to nearly every other identified RecQ family member, the RecQ helicase from the radioresistant bacterium Deinococcus radiodurans encodes three "Helicase and RNase D C-terminal" (HRDC) domains at its C terminus. HRDC domains have been implicated in structure-specific nucleic acid binding with roles in targeting RecQ proteins to particular DNA structures; however, only RecQ proteins with single HRDC domains have been examined to date. We demonstrate that the HRDC domains can be proteolytically removed from the D. radiodurans RecQ (DrRecQ) C terminus, consistent with each forming a structural domain. Using this observation as a guide, we produced a panel of recombinant DrRecQ variants lacking combinations of its HRDC domains to investigate their biochemical functions. The N-terminal-most HRDC domain is shown to be critical for high affinity DNA binding and for efficient unwinding of DNA in some contexts. In contrast, the more C-terminal HRDC domains attenuate the DNA binding affinity and DNA-dependent ATP hydrolysis rate of the enzyme and play more complex roles in structure-specific DNA unwinding. Our results indicate that the multiple DrRecQ HRDC domains have evolved to encode DNA binding and regulatory functions in the enzyme.  相似文献   

8.
Telomeres are composed of specialized chromatin that includes DNA repair/recombination proteins, telomere DNA‐binding proteins and a number of three dimensional nucleic acid structures including G‐quartets and D‐loops. A number of studies suggest that the BLM and WRN recQ‐like helicases play important roles in recombination‐mediated mechanisms of telomere elongation or A lternative L engthening of T elomeres (ALT), processes that maintain/elongate telomeres in the absence of telomerase. BLM and WRN localize within ALT‐associated nuclear bodies in telomerase‐negative immortalized cell lines and interact with the telomere‐specific proteins POT1, TRF1 and TRF2. Helicase activity is modulated by these interactions. BLM functions in DNA double‐strand break repair processes such as non‐homologous end joining, homologous recombination‐mediated repair, resolution of stalled replication forks and synthesis‐dependent strand annealing, although its precise functions at the telomeres are speculative. WRN also functions in DNA replication, recombination and repair, and in addition to its helicase domain, includes an exonuclease domain not found in other recQ‐like helicases. The biochemical properties of BLM and WRN are, therefore, important in biological processes other than DNA replication, recombination and repair. In this review, we discuss some previous and recent findings of human rec‐Q‐like helicases and their role in telomere elongation during ALT processes. J. Cell. Biochem. 109: 7–15, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The product of the gene mutated in Bloom's syndrome, BLM, is a 3′–5′ DNA helicase belonging to the highly conserved RecQ family. In addition to a conventional DNA strand separation activity, BLM catalyzes both the disruption of non-B-form DNA, such as G-quadruplexes, and the branch migration of Holliday junctions. Here, we have characterized a new activity for BLM: the promotion of single-stranded DNA (ssDNA) annealing. This activity does not require Mg2+, is inhibited by ssDNA binding proteins and ATP, and is dependent on DNA length. Through analysis of various truncation mutants of BLM, we show that the C-terminal domain is essential for strand annealing and identify a 60 amino acid stretch of this domain as being important for both ssDNA binding and strand annealing. We present a model in which the ssDNA annealing activity of BLM facilitates its role in the processing of DNA intermediates that arise during repair of damaged replication forks.  相似文献   

10.
Organisms are constantly exposed to various environmental insults which could adversely affect the stability of their genome. To protect their genomes against the harmful effect of these environmental insults, organisms have evolved highly diverse and efficient repair mechanisms. Defective DNA repair processes can lead to various kinds of chromosomal and developmental abnormalities. RecQ helicases are a family of evolutionarily conserved, DNA unwinding proteins which are actively engaged in various DNA metabolic processes, telomere maintenance and genome stability. Bacteria and lower eukaryotes, like yeast, have only one RecQ homolog, whereas higher eukaryotes including humans possess multiple RecQ helicases. These multiple RecQ helicases have redundant and/or non-redundant functions depending on the types of DNA damage and DNA repair pathways. Humans have five different RecQ helicases and defects in three of them cause autosomal recessive diseases leading to various kinds of cancer predisposition and/or aging phenotypes. Emerging evidence also suggests that the RecQ helicases have important roles in telomere maintenance. This review mainly focuses on recent knowledge about the roles of RecQ helicases in DNA double strand break repair and telomere maintenance which are important in preserving genome integrity.  相似文献   

11.
UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II). In this paper we analyze the function of the ID and the zinc finger motif in damage specific binding of Escherichia coli UvrA. We show that the ID is not essential for damage discrimination, but it does stabilize UvrA on the DNA, most likely by forming a clamp around the DNA helix. We present evidence that two conserved arginine residues in the ID contact the phosphate backbone of the DNA, leading to strand separation after the ATPase-driven movement of the ID's. Remarkably, deletion of the ID generated a phenotype in which UV-survival strongly depends on the presence of photolyase, indicating that UvrA and photolyase form a ternary complex on a CPD-lesion. The zinc-finger motif is shown to be important for the transfer of the damage recognition signal to the ATPase of UvrA. In the absence of this domain the coupling between DNA binding and ATP hydrolysis is completely lost. Mutation of the phenylalanine residue in the tip of the zinc-finger domain resulted in a protein in which the ATPase was already triggered when binding to an undamaged site. As the zinc-finger motif is connected to the DNA binding regions on the surface of UvrA, this strongly suggests that damage-specific binding to these regions results in a rearrangement of the zinc-finger motif, which in its turn activates the ATPase. We present a model how damage recognition is transmitted to activate ATP hydrolysis in ATP binding domain I of the protein.  相似文献   

12.
Werner syndrome (WS) is an autosomal recessive disease characterized by premature aging. The gene responsible for the syndrome was recently cloned and shown to encode a protein with strong homology to DNA/RNA helicases. In addition, the Werner syndrome protein (WRN) possesses an exonuclease activity. Based on the homology to helicases it has been proposed that WRN functions in some aspects of DNA replication, recombination, or repair. However, there is currently no evidence of a role of WRN in any of these processes; therefore, its biological function remains unknown. Using a biochemical approach, we have identified two polypeptides that bind to the WRN protein. Peptide sequence analysis indicates that the two proteins are identical to Ku70 and Ku80, a heterodimer involved in double strand DNA break repair by non-homologous DNA end joining. Protein-protein interaction studies reveal that WRN binds directly to Ku80 and that this interaction is mediated by the amino terminus of WRN. In addition, we show that the binding of Ku alters the specificity of the WRN exonuclease. These results suggest a potential involvement of WRN in the repair of double strand DNA breaks.  相似文献   

13.
A conserved G4 DNA binding domain in RecQ family helicases   总被引:1,自引:0,他引:1  
RecQ family helicases play important roles at G-rich domains of the genome, including the telomeres, rDNA, and immunoglobulin switch regions. This appears to reflect the unusual ability of enzymes in this family to unwind G4 DNA. How RecQ family helicases recognize this substrate has not been established. Here, we show that G4 DNA is a preferred target for BLM helicase within the context of long DNA molecules. We identify the RQC domain, found only in RecQ family enzymes, as an independent, high affinity and conserved G4 DNA binding domain; and show that binding to Holliday junctions involves both the RQC and the HRDC domains. These results provide mechanistic understanding of differences and redundancies of function and activities among RecQ family helicases, and of how deficiencies in human members of this family may contribute to genomic instability and disease.  相似文献   

14.
Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.  相似文献   

15.
ATP‐dependent DNA end recognition and nucleolytic processing are central functions of the Mre11/Rad50 (MR) complex in DNA double‐strand break repair. However, it is still unclear how ATP binding and hydrolysis primes the MR function and regulates repair pathway choice in cells. Here, Methanococcus jannaschii MR‐ATPγS‐DNA structure reveals that the partly deformed DNA runs symmetrically across central groove between two ATPγS‐bound Rad50 nucleotide‐binding domains. Duplex DNA cannot access the Mre11 active site in the ATP‐free full‐length MR complex. ATP hydrolysis drives rotation of the nucleotide‐binding domain and induces the DNA melting so that the substrate DNA can access Mre11. Our findings suggest that the ATP hydrolysis‐driven conformational changes in both DNA and the MR complex coordinate the melting and endonuclease activity.  相似文献   

16.
Replication is a crucial cellular process. Replicative helicases unwind DNA providing the template strand to the polymerase and promoting replication fork progression. Helicases are multi-domain proteins which use an ATPase domain to couple ATP hydrolysis with translocation, however the role that the other domains might have during translocation remains elusive. Here, we studied the unexplored self-loading helicases called Reps, present in Staphylococcus aureus pathogenicity islands (SaPIs). Our cryoEM structures of the PriRep5 from SaPI5 (3.3 Å), the Rep1 from SaPI1 (3.9 Å) and Rep1–DNA complex (3.1Å) showed that in both Reps, the C-terminal domain (CTD) undergoes two distinct movements respect the ATPase domain. We experimentally demonstrate both in vitro and in vivo that SaPI-encoded Reps need key amino acids involved in the staircase mechanism of translocation. Additionally, we demonstrate that the CTD′s presence is necessary for the maintenance of full ATPase and helicase activities. We speculate that this high interdomain flexibility couples Rep′s activities as initiators and as helicases.  相似文献   

17.
UvsW protein belongs to the SF2 helicase family and is one of three helicases found in T4 phage. UvsW governs the transition from origin-dependent to origin-independent replication through the dissociation of R-loops located at the T4 origins of replication. Additionally, in vivo evidence indicates that UvsW plays a role in recombination-dependent replication and/or DNA repair. Here, the biochemical properties of UvsW helicase are described. UvsW is a 3' to 5' helicase that unwinds a wide variety of substrates, including those resembling stalled replication forks and recombination intermediates. UvsW also contains a potent single-strand DNA annealing activity that is enhanced by ATP hydrolysis but does not require it. The annealing activity is inhibited by the non-hydrolysable ATP analog (adenosine 5'-O-(thiotriphosphate)), T4 single-stranded DNA-binding protein (gp32), or a small 8.8-kDa polypeptide (UvsW.1). Fluorescence resonance energy transfer experiments indicate that UvsW and UvsW.1 form a complex, suggesting that the UvsW helicase may exist as a heterodimer in vivo. Fusion of UvsW and UvsW.1 results in a 68-kDa protein having nearly identical properties as the UvsW-UvsW.1 complex, indicating that the binding locus of UvsW.1 is close to the C terminus of UvsW. The biochemical properties of UvsW are similar to the RecQ protein family and suggest that the annealing activity of these helicases may also be modulated by protein-protein interactions. The dual activities of UvsW are well suited for the DNA repair pathways described for leading strand lesion bypass and synthesis-dependent strand annealing.  相似文献   

18.
19.
Helicases move on DNA via an ATP binding and hydrolysis mechanism coordinated by well-characterized helicase motifs. However, the translocation along single-stranded DNA (ssDNA) and the strand separation of double-stranded (dsDNA) may be loosely or tightly coupled. Dda is a phage T4 SF1B helicase with sequence homology to the Pif1 family of helicases that tightly couples translocation to strand separation. The crystal structure of the Dda-ssDNA binary complex reveals a domain referred to as the "pin" that was previously thought to remain static during strand separation. The pin contains a conserved phenylalanine that mediates a transient base-stacking interaction that is absolutely required for separation of dsDNA. The pin is secured at its tip by protein-protein interactions through an extended SH3 domain thereby creating a rigid strut. The conserved interface between the pin and the SH3 domain provides the mechanism for tight coupling of translocation to strand separation.  相似文献   

20.
RecQ helicases are essential for the maintenance of chromosome stability. In addition to DNA unwinding, some RecQ enzymes have an intrinsic DNA strand annealing activity. The function of this dual enzymatic activity and the mechanism that regulates it is, however, unknown. Here, we describe two quaternary forms of the human RECQ1 helicase, higher-order oligomers consistent with pentamers or hexamers, and smaller oligomers consistent with monomers or dimers. Size exclusion chromatography and transmission electron microscopy show that the equilibrium between the two assembly states is affected by single-stranded DNA (ssDNA) and ATP binding, where ATP or ATPγS favors the smaller oligomeric form. Our three-dimensional electron microscopy reconstructions of human RECQ1 reveal a complex cage-like structure of approximately 120 Å × 130 Å with a central pore. This oligomeric structure is stabilized under conditions in which RECQ1 is proficient in strand annealing. In contrast, competition experiments with the ATPase-deficient K119R and E220Q mutants indicate that RECQ1 monomers, or tight binding dimers, are required for DNA unwinding. Collectively, our findings suggest that higher-order oligomers are associated with DNA strand annealing, and lower-order oligomers with DNA unwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号