首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a 10-year study of the dynamics of toxic dinoflagellate Karenia selliformis at 20 stations along the nearshore of the Gulf of Gabes (Tunisia) in relation to environmental variables. Dinoflagellates and K. selliformis have dominated the phytoplankton community and K. selliformis blooms have taken place since 2001. Phytoplankton groups showed significant variability among sampling sites, but did not vary significantly from year to year. Redundancy analysis revealed that salinity, nitrate and phosphorus significantly explained the variability of the main phytoplanktonic groups namely, diatoms, dinoflagellates, cyanobacteria and euglenoids, while K. selliformis exhibited a specific pattern. Because of the wide variability in K. selliformis abundance, we tested the influence of environmental variables on its presence/absence using a generalized linear mixed-effect model (GLMM). K. selliformis occurrence had a positive relationship with nitrate and a negative one with total phosphorus. The different spatial gradients of these two chemical variables led to spatial differences in K. selliformis development prevalent near touristic areas. Temperature was also retained in the GLMM and since it rose over the 10 years of the study, it likely supports the expansion of K. selliformis. The discrepancies between model predictions and observed occurrences suggest that consideration of other sources of environmental forcing may improve our understanding of the determinism of K. selliformis dynamics. Our study may be useful in the management of this ecosystem so as to plan for the best disposal options in the treatment of urban and industrial wastes in the gulf's coastal waters.  相似文献   

2.
Human respiratory and gastrointestinal illnesses can result from exposures to brevetoxins originating from coastal Florida red tide blooms, comprising the marine alga Karenia brevis (K. brevis). Only limited research on the extent of human health risks and illness costs due to K. brevis blooms has been undertaken to date. Because brevetoxins are known neurotoxins that are able to cross the blood-brain barrier, it is possible that exposure to brevetoxins may be associated with neurological illnesses. This study explored whether K. brevis blooms may be associated with increases in the numbers of emergency department visits for neurological illness. An exposure-response framework was applied to test the effects of K. brevis blooms on human health, using secondary data from diverse sources. After controlling for resident population, seasonal and annual effects, significant increases in emergency department visits were found specifically for headache (ICD-9 784.0) as a primary diagnosis during proximate coastal K. brevis blooms. In particular, an increased risk for older residents (≥55 years) was identified in the coastal communities of six southwest Florida counties during K. brevis bloom events. The incidence of headache associated with K. brevis blooms showed a small but increasing association with K. brevis cell densities. Rough estimates of the costs of this illness were developed for hypothetical bloom occurrences.  相似文献   

3.
Blooms of the toxic dinoflagellate, Karenia brevis, occur annually along the Gulf coast of Florida. Other species, like Karenia selliformis, are at times found in association. Hemolytic activity, the ability to lyse red blood cells, of two K. brevis clones (SP3 non-toxic (N-tox) and SP3 super toxic (S-tox)) from the Gulf of Mexico and a single clone of K. selliformis from New Zealand was investigated throughout a growth cycle. Activity is reported as effective concentration (EC50) values, the quantitative measure of hemolysis of human erythrocytes expressed as cell numbers. Both cells and media of K. selliformis cultures consistently produced potent levels of hemolysis (maximum EC50 = 4.88 × 103 cells) from inoculation until the population declined 35 days later. For SP3 N-tox and S-tox, no hemolytic activity was detectable until day 26 of sampling. The media of both SP3 N-tox and SP3 S-tox cultures consistently contained non-detectable or low levels of hemolysis compared to K. selliformis. Maximum EC50s for the SP3 clones were 1.80 × 106 and 1.97 × 106 cells, respectively. The experimental EC50 values observed represent ecologically relevant cell densities for K. selliformis, but not for the K. brevis clones. In addition, the hemolytic activity of gymnodimine A and various PbTx derivatives was examined in this study. Our findings indicate that the hemolytic capability of these dinoflagellates, especially K. selliformis, represents an additional component of toxicity aside from their already recognized toxins and that this activity may play a larger role than was previously considered. The purpose of this study was to extend the knowledge of the biology and toxicology of species within the genus Karenia.  相似文献   

4.
As recently as a decade ago, Karenia brevis red tides and their effects on animal resources in the Gulf of Mexico were principally perceived as acute blooms that caused massive fish kills. Although occasional mortalities of higher vertebrates were documented, it has only been in the past decade that conclusive evidence has unequivocally demonstrated that red tides and their brevetoxins are lethal to these organisms. Brevetoxins can be transferred through the food chain and are accumulated in or transferred by biota at many trophic levels. The trophic transfer of brevetoxins in the food web is a complex phenomenon, one that is far more complicated than originally conceived. Unexplained fish kills and other animal mortalities in areas where red tide is endemic are being increasingly linked with post-bloom exposures of biota to brevetoxins. Mass mortality events of endangered Florida manatees (Trichechus manatus latirostris) follow a consistent spatial and temporal pattern, occurring primarily in the spring in southwestern Florida. Persistent blooms can also cause a cascade of environmental changes, affecting the ecosystem and causing widespread die-offs of benthic communities. Ongoing fish kills from sustained blooms can lead to short-term declines in local populations. Although animal populations in areas where red tide is endemic are unquestionably at risk, it remains to be determined to what extent populations can continue to recover from these sustained effects.  相似文献   

5.
This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.  相似文献   

6.
Once limited to the Laguna Madre of Texas, blooms of the brown tide organism, Aureoumbra lagunensis, have recently been reported elsewhere. Previous studies have focused on the role of extreme hypersalinity and lack of grazing pressure as facilitators of brown tide blooms. However, development of blooms in systems that are not experiencing extreme hypersalinity, and also that are undergoing eutrophication, suggests that our understanding of A. lagunensis bloom dynamics requires additional refinement. The goal of this study was to quantify the spatial-temporal distribution of, and potential controls upon, A. lagunensis in Baffin Bay, Texas. Five sites were sampled monthly over a three-year period, encompassing nearly two years of drought and hypersaline conditions, followed by a high rainfall, lower salinity period. A. lagunensis abundances were higher during drought in May 2013 – March 2015 compared to the higher rainfall period of April 2015 – April 2016. Abundances typically peaked in summer months, though the seasonal pattern was disrupted in 2015 during the shift from high to low salinity conditions. Persistently high abundances of A. lagunensis were observed in the Laguna Salada tributary of Baffin Bay, which typically has higher dissolved organic nitrogen concentrations and may be less well flushed than other parts of Baffin Bay. Thus this location may serve as a reservoir for A. lagunensis in the system. Overall, A. lagunensis abundance was positively correlated with DOC and salinity, and negatively correlated with ammonium, orthophosphate, and ciliate biovolume. These results suggest a variety of physical, chemical and biological factors affect A. lagunensis population dynamics and stress the need for more research on nutrient-A. lagunensis relationships.  相似文献   

7.
Research on Karenia brevis blooms in the Gulf of Mexico started with the 1946–1947 red tide along the Florida west coast. Early research was on the organism itself, its tolerances and requirements, and the environment in which it lived and grew. Control of blooms, as a management option, was pursued in the 1950s with little success. However, in the 1960s–1970s, new regulation of shellfish growing areas was a public health management success. Research on K. brevis blooms followed funding cycles and was sporadic until the late 1990s when the National Oceanic and Atmospheric Administration (NOAA) and the Environmental Protection Agency (EPA) funded the Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) and NOAA Monitoring and Event Response of Harmful Algal Blooms (MERHAB) programs. These particular funding programs, augmented by State of Florida appropriations, provided the opportunity to study K. brevis blooms on different temporal-spatial scales and consequently advanced the science. This review looks at historical research results in the light of today's advances.  相似文献   

8.
《Harmful algae》2011,10(6):600-606
The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide.  相似文献   

9.
Harmful algal blooms (HABs) are natural stressors in the coastal environment that may be increasing in frequency and severity. This study investigates whether severe red tide blooms, caused by Karenia brevis, affect the behavior of resident coastal bottlenose dolphins in Sarasota Bay, Florida through changes to juvenile dolphin activity budgets, ranging patterns, and social associations. Behavioral observations were conducted on free‐ranging juvenile dolphins during the summer months of 2005–2007, and behavior during red tide blooms was compared to periods of background K. brevis abundance. We also utilized dolphin group sighting data from 2004 to 2007 to obtain comparison information from before the most severe recent red tide of 2005 and incorporate social association information from adults in the study area. We found that coastal dolphins displayed a suite of behavioral changes associated with red tide blooms, including significantly altered activity budgets, increased sociality, and expanded ranging behavior. At present, we do not fully understand the mechanism behind these red tide‐associated behavioral effects, but they are most likely linked to underlying changes in resource availability and distribution. These behavioral changes have implications for more widespread population impacts, including increased susceptibility to disease outbreaks, which may contribute to unusual mortality events during HABs.  相似文献   

10.
Autonomous underwater gliders with customized sensors were deployed in October 2011 on the central West Florida Shelf to measure a Karenia brevis bloom, which was captured in satellite imagery since late September 2011. Combined with in situ taxonomy data, satellite measurements, and numerical circulation models, the glider measurements provided information on the three-dimensional structure of the bloom. Temperature, salinity, fluorescence of colored dissolved organic matter (CDOM) and chlorophyll-a, particulate backscattering coefficient, and K. brevis-specific chlorophyll-a concentrations were measured by the gliders over >250 km from the surface to about 30-m water depth on the shallow shelf. At the time of sampling the bloom was characterized by uniform vertical structures, with relatively high chlorophyll-a and CDOM fluorescence, low temperature, and high salinity. Satellite data extracted along the glider tracks demonstrated coherent spatial variations as observed by the gliders. Further, the synoptic satellite observations revealed the bloom evolution during the 7 months between late September 2011 and mid April 2012, and showed the maximum bloom size of ∼3000 km2 around 23 November. The combined satellite and in situ data also confirmed that the ratio of satellite-derived fluorescence line height (FLH) to particulate backscattering coefficient at 547 nm (bbp(547)) could be used as a better index than FLH alone to detect K. brevis blooms. Numerical circulation models further suggested that the bloom could have been initiated offshore and advected onshore via the bottom Ekman layer. The case study here demonstrates the unique value of an integrated coastal ocean observing system in studying harmful algal blooms (HABs).  相似文献   

11.
The brown tides occurring in the coastal scallop cultivation area of Qinhuangdao, China, in recent years are caused by Aureococcus anophagefferens and significantly impact the scallop industry and the marine ecosystem in this region. Long-term investigations of phytoplankton and hydrological variables in the Qinhuangdao sea area were conducted in this study to understand the spatial-temporal variations of A. anophagefferens in relation to environmental factors. Samples were collected during twelve cruises from July 2011 to December 2013 and were analyzed for the temperature, salinity, dissolved oxygen (DO), nutrients and phytoplankton pigments. All diagnostic pigments of A. anophagefferens, such as chlorophyll c3 (Chl c3), Chl c2, 19′-butanoyloxyfucoxanthin (But-fuco), fucoxanthin (Fuco), and diadinoxanthin (Diad), were detected in the surface water by using high-performance liquid chromatography (HPLC). The highest concentrations of But-fuco (5.64 μg L−1), Fuco (37.94 μg L−1) and chlorophyll a (Chl a, 17.25 μg L−1) occurred in different seasons and sampling sites. The A. anophagefferens bloom (as indicated by But-fuco) usually expanded from the south to the north of the Qinhuangdao sea area, close to scallop-culturing regions. The bloom unusually starts in May, reaches its peak in June and almost disappears in August, with the temperature ranging from ca. 19 °C to 23 °C. The redundancy analysis (RDA) indicated that relatively high salinity (>29) and low inorganic nutrients were suitable for the development of the A. anophagefferens bloom. The ratios of diagnostic pigments to Chl a were not constant during different cruises and generally obeyed two different linear relationships, thus indicating the co-occurrence of the blooms of A. anophagefferens and other species, such as Minutocellus polymorphus. In summary, our work reports the long-term variation of A. anophagefferens blooms based on diagnostic pigments and environmental controls, which may provide more insights into the formation mechanisms of the brown tide in this region.  相似文献   

12.
《农业工程》2022,42(5):501-510
27 points were surveyed, and then algae and seawater samples were collected in Hai-tan Strait. The correlation on HAB (harmful algae blooms) species and environmental factors were studied. Water temperature (T) and salinity (S) ranging from 11.9 °C to 27.8 °C and 20.4 to 33.7 in the year, respectively. Dissolved inorganic nitrogen (DIN) in surface water ranged from 0.098 to 0.776 mg·L?1, PO4-P ranged from 0.0016 to 0.0729 mg·L?1. And Eutrophication index (E) ranged from 0.03 to 13.8, varied different. 102 species of algae belonging to 4 classes and 52 genera were identified. The diversity was increasingly from winter to summer, decreasingly from summer to autumn, highest in summer. 49 species of red tide organisms were found in Hai-tan Strait, main two classes were Bacillariophyta and Pyrrophyta. Ceratium tripos and Noctiluca scintillans were dominant species in spring, Skeletonema costatum was common, and was also mainly HABs dominant species in summer, autumn and winter. Pearson correlation and Canonical correspondence analysis (CCA) showed that environment factors had significant correlation with dominance HABs species in different extent, and the ordination result was that S(Salinity) > T(Temperature) > pH > E(Eutrophication index) > DO(dissolved oxygen) > DIN > PO4-P. Prorocentrum donghaiense, Skeletonema costatum, Noctiluca scintillans and Karenia mikimotoi caused many times red tide in 2011 to 2016. However, Prorocentrum donghaiense and Karenia mikimotoi cell density was low in survey year. North of the strait and east coast of the southern strait were sensitive sea area of red tide. The work highlights for the first time ecological characteristic of HAB was studied in Hai-tan Strait. Further, the data and results of this study will help us to improve efficiency for controlling HAB. Even, it is worthwhile to the management and response to the red tide disaster. Ordination result can also be a good indicator of ecological risk.  相似文献   

13.
A 3 year study (2000–2002) in Barnegat Bay-Little Egg Harbor (BB/LEH), New Jersey (USA), was conducted by the New Jersey Department of Environmental Protection, Division of Science Research and Technology (DSRT) in cooperation with several partners to assess brown tide blooms in coastal waters in NJ. Water samples were collected by boat and helicopter at coastal stations from 2000 to 2002 along with field measurements. Aureococcus anophagefferens were enumerated and associated environmental factors were analyzed. A. anophagefferens abundances were classified using the Brown Tide Bloom Index and mapped, along with salinity and temperature parameters, to their geo-referenced location using the ArcView GIS. The highest A. anophagefferens abundances (>106 cells ml−1), including category 3 blooms (≥200,000 cells ml−1) and category 2 blooms (≥35,000 to ≤200,000 cells ml−1), recurred during each of the 3 years of sampling and covered significant geographic areas of the estuary, especially in Little Egg Harbor. While category 3 blooms were generally associated with warmer water temperatures (>16 °C) and higher salinity (>25–26 ppt), these factors were not sufficient alone to explain the timing or distribution of A. anophagefferens blooms. There was no significant relationship between brown tide abundances and dissolved organic nitrogen measured in 2002 but this was consistent with other studies. Extended drought conditions, with corresponding low freshwater inputs and elevated bay water salinities, occurring during this time were conducive to blooms. A. anophagefferens abundances were well above the reported levels that have been reported to cause negative impacts on shellfish. It was shown that over 50% of the submerged aquatic vegetation (SAV) habitat located in Barnegat Bay/Little Egg Harbor was categorized as having a high frequency of category 2 or 3 blooms for all 3 years.  相似文献   

14.
Three new dinoflagellate species, Karenia papilionacea sp. nov., Karenia selliformis sp. nov., and Karenia bidigitata sp. nov., were compared with the toxic species Karenia mikimotoi (Miyake & Kominami ex Oda) G. Hansen & Moestrup, Karenia brevis (Davis) G. Hansen & Moestrup, and Karenia brevisulcata (Chang) G. Hansen & Moestrup using the same fixative. Distinguishing morphological characters for the genus Karenia included a smooth theca and a linear apical groove. The new species can be distinguished on the basis of morphological characters of vegetative cells that include the location and shape of the nucleus; the relative excavation of the hypotheca; the characteristics of apical and sulcal groove extensions on the epitheca; the cellular shape, size, and symmetry; the degree of dorsoventral compression; and the presence of an apical protrusion or carina. Species with pronounced dorsoventral compression swim in a distinctive fluttering motion. An intercingular tubular structure traversing the proximal and distal ends of the cingulum is common to the species of Karenia, Karlodinium micrum (Leadbeater & Dodge) J. Larsen, Gymnodinium pulchellum J. Larsen, and Gyrodinium corsicum Paulmier. Molecular phylogenetic analyses of rDNA sequence alignments show that the new species are phylogenetically distinct but closely related to K. mikimotoi and K. brevis.  相似文献   

15.
All three macroalgal clades (Chlorophyta, Rhodophyta, and Phaeophyceae) contain bloom-forming species. Macroalgal blooms occur worldwide and have negative consequences for coastal habitats and economies. Narragansett Bay (NB), Rhode Island, USA, is a medium sized estuary that is heavily influenced by anthropogenic activities and has been plagued by macroalgal blooms for over a century. Over the past decade, significant investment has upgraded wastewater treatment from secondary treatment to water-quality based limits (i.e. tertiary treatment) in an effort to control coastal eutrophication in this system. The goal of this study was to improve the understanding of multi-year macroalgal bloom dynamics through intensive aerial and ground surveys conducted monthly to bi-monthly during low tides in May–October 2006–2013 in NB. Aerial surveys provided a rapid characterization of macroalgal densities across a large area, while ground surveys provided high resolution measurements of macroalgal identity, percent cover, and biomass.Macroalgal blooms in NB are dominated by Ulva and Gracilaria spp. regardless of year or month, although all three clades of macroalgae were documented. Chlorophyta cover and nutrient concentrations were highest in the middle and upper bay. Rhodophyta cover was highest in the middle and lower bay, while drifting Phaeophyceae cover was patchy. Macroalgal blooms of >1000 g fresh mass (gfm)/m2 (max = 3510 gfm/m2) in the intertidal zone and >3000 gfm/m3 (max = 8555 gfm/m3) in the subtidal zone were observed within a heavily impacted embayment (Greenwich Bay). Macroalgal percent cover (intertidal), biomass (subtidal), and diversity varied significantly between year, month-group, site, and even within sites, with the highest species diversity at sites outside of Greenwich Bay. Total intertidal macroalgal percent cover, as well as subtidal Ulva biomass, were positively correlated with temperature. Dissolved inorganic nitrogen concentrations were correlated with the total biomass of macroalgae and the subtidal biomass of Gracilaria spp. but not the biomass of Ulva spp. Despite seasonal reductions in the nutrient output of wastewater treatment facilities emptying into upper Narragansett Bay in recent years, macroalgal blooms still persist. Continued long-term monitoring of water quality, macroalgal blooms, and ecological indicators is essential to understand the changes in macroalgal bloom dynamics that occur after nutrient reductions from management efforts.  相似文献   

16.
While the economic consequences of HABs may seem obvious, there is little empirical evidence to support the assertion or its magnitude relative to other environmental effects. As scientists learn more about the effectiveness of alternative HAB prevention, mitigation, and control strategies and agencies prepare for a suite of environmental events, information on potential economic losses are needed at the firm level to evaluate and justify continued HAB-related expenditures. To determine the extent of monetary losses that some firms may have incurred due to blooms of Karenia brevis (red tides) in Southwest Florida, 7 years of daily proprietary data were obtained from three beachfront restaurants and supplemented with environmental data from nearby weather stations. The statistical models revealed that reductions in daily sales ranged from $868 to $3734 (13.7%–15.3% on average) when red tide conditions were present. Estimated losses are compared to other environmental events and were found to coincide with those from other studies. The incidence of red tide events (as noted by each restaurant manager) corresponded with cell counts that averaged 180,853 cells/l as measured within 6 miles. Collectively this information supports the hypothesis of localized economic losses and provides a threshold cell count for future loss projections.  相似文献   

17.
Because of their vulnerable population status, assessing exposure levels and impacts of toxins on the health status of Gulf of Mexico marine turtle populations is critical. From 2011 to 2013, two large blooms of the red tide dinoflagellate, Karenia brevis, occurred along the west coast of Florida USA (from October 2011 to January 2012 and October 2012 to April 2013). Other than recovery of stranded individuals, it is unknown how harmful algal blooms affected the Kemp's ridley sea turtles (Lepidochelys kempii) inhabiting the affected coastal waters. It is essential to gather information regarding brevetoxin exposure in these turtles to determine if it poses a threat to marine turtle health and survival. From April 2012 to May 2013, we collected blood from 13 immature Kemp's ridley turtles captured in the Pine Island Sound region of the Charlotte Harbor estuary. Nine turtles were sampled immediately after or during the red tide events (bloom group) while four turtles were sampled between the events (non-bloom group). Plasma was analyzed for total brevetoxins (reported as ng PbTx-3 eq/mL), superoxide dismutase (SOD) activity, total protein concentration and protein electrophoretic profiles (albumin, alpha-, beta- and gamma-globulins). Brevetoxin concentrations ranged from 7.0 to 33.8 ng PbTx-3 eq/mL. Plasma brevetoxin concentrations in the nine turtles sampled during or immediately after the red tide events were significantly higher (by 59%, P = 0.04) than turtles sampled between events. No significant correlations were observed between plasma brevetoxin concentrations and plasma proteins or SOD activity, most likely due to the small sample size; however alpha-globulins tended to increase with increasing brevetoxin concentrations in the bloom group. Smaller (carapace length and mass) bloom turtles had higher plasma brevetoxin concentrations than larger bloom turtles, possibly due to a growth dilution effect with increasing size. The research presented here improves the current understanding of potential impacts of environmental brevetoxin exposure on marine turtle health and survival.  相似文献   

18.
Harmful algal blooms (HABs) of Karenia brevis are a recurrent problem in the Gulf of Mexico, with nearly annual occurrences on the Florida southwest coast, and fewer occurrences on the northwest Florida and Texas coasts. Beginning in 1999, the National Oceanic and Atmospheric Administration has issued the Gulf of Mexico HAB Bulletins to support state monitoring and management efforts. These bulletins involve analysis of satellite imagery with field and meteorological station data. The effort involves several components or models: (a) monitoring the movement of an algal bloom that has previously been identified as a HAB (type 1 forecast); (b) detecting new blooms as HAB or non-HAB (type 2); (c) predicting the movement of an identified HAB (type 3); (d) predicting conditions favorable for a HAB to occur where blooms have not yet been observed (type 4). The types 1 and 2 involve methods of bloom detection requiring routine remote sensing, especially satellite ocean color imagery and in situ data. Prediction (types 3 and 4) builds on the monitoring capability by using interpretative and numerical modeling. Successful forecasts cover more than 1000 km of coast and require routine input of remotely sensed and in situ data.The data sources used in this effort include ocean color imagery from the Sea-Viewing Wide Field-of-View Sensor/OrbView-2 satellite and processed using coastal-specific algorithms, wind data from coastal and offshore buoys, field observations of bloom location and intensity provided by state agencies, and forecasts from the National Weather Service. The HAB Bulletins began in coordination with the state of Florida in autumn of 1999 and included K. brevis bloom monitoring (type 1), with limited advisories on transport (type 3) and the detection of blooms in new areas (type 2). In autumn 2000, we improved both the transport forecasts and detection capabilities and began prediction of conditions favorable for bloom development (type 4). The HAB Bulletins have had several successes. The state of Florida was advised of the potential for a bloom to occur at the end of September 2000 (type 4), and the state was alerted to the position of blooms in January 2000 and October 2001 in areas that had not been previously sampled (type 3). These successful communications of HAB activity allowed Florida agencies responsible for shellfish management and public health to respond to a rapidly developing event in a timely, efficient manner.  相似文献   

19.
The presence of Ulva microscopic propagules may play an important role in the rapid development of high-biomass blooms of green algae in the Yellow Sea. Six cruises were conducted, to determine the abundance and distribution of Ulva microscopic propagules associated with a green tide that developed in the southern coastal waters of the Yellow Sea from April to August, 2012. Results indicated that Ulva microscopic propagules were widespread in these waters, with the highest density being up to 4800 ind. L−1, prior to the appearance of the green tide in April. High densities were also widely distributed along the coast during May and June, after the appearance of the floating green tide. The quantity of Ulva microscopic propagules significantly decreased when the floating green tide declined in July, reaching densities of up to 162 ind. L−1, following the disappearance of the floating green tide in August. Quantitative studies on the distribution patterns of Ulva microscopic propagules along the southern coast of the Yellow Sea indicated a significant correlation between density and salinity, turbidity and nutrient concentrations. Temporal and geographical distribution patterns of Ulva microscopic propagules were also significantly affected by the presence of a large biomass of attached, or floating, Ulva species algae.  相似文献   

20.
《Aquatic Botany》1986,24(4):403-407
On the shallow coral shelves of Yap, the distribution of Cymodocea rotundata Ehrenb. & Aschers., Thalassia hemprichii (Ehrenb.) Aschers. and Enhalus acoroides (L.) Royle reflects their tolerance of low tide conditions that include mid-day water temperatures exceeding 40°C and water salinity during heavy rains to 2‰. The restriction of Cyamodocea serrulata (R.Br.) Aschers. & Magnus and Syringodium isoetifolium (Aschers.) Dandy to deeper sites reflects less tolerance to low tide conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号