首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
目的:分析缺氧诱导因子-1α(HIF-1α)、血管内皮生长因子(VEGF)和血管内皮生长因子受体2(KDR)在不同受压时间点大鼠压力性损伤局部皮肤组织中的表达及相互关系,探讨3期压力性损伤慢性难愈的可能机制。方法:将40只SD雄性大鼠随机分为正常对照组、受压3 d、5 d、7 d、 9 d组( n=8 ),使用磁铁压迫法建立3期压力性损伤动物模型。HE染色观察皮肤组织形态;免疫组化法检测VEGF表达,Western blot 检测皮肤组织HIF-1α、VEGF、KDR蛋白表达;对数据行单因素方差分析、LSD检验。结果:①HE结果显示,与正常对照组相比,受压组大鼠表皮逐渐增厚,血管数量不断减少,胶原排列紊乱,炎症细胞浸润增加。②免疫组化结果显示:受压3 d组大鼠皮肤组织中VEGF蛋白表达量较正常对照组明显增高(P<0.01);受压5 d、7 d和 9 d组大鼠皮肤组织中VEGF蛋白表达量均明显低于正常对照组(P<0.05)。WB结果和免疫组化结果一致。③WB结果显示:受压3 d、5 d和7 d组大鼠皮肤组织中HIF-1α表达量均明显高于正常对照组(P<0.01 或 P<0.05);4组受压组大鼠皮肤组织KDR蛋白表达量均低于正常对照组(P<0.05或P<0.01)。结论:HIF-1α介导的VEGF和KDR蛋白表达减少引起组织血管生成减少可能是3期压力性损伤慢性难愈的重要原因之一。  相似文献   

3.
4.
One of the earliest events in the development of psoriatic lesion is a vascular network expansion. The abnormal vascular network is associated with increased endothelial cells (ECs) survival, proliferation, adhesion, migration, angiogenesis and permeability in psoriatic lesion. Our previous study demonstrated that epidermal growth factor‐like repeats and discoidin I‐like domains 3 (EDIL3) derived from psoriatic dermal mesenchymal stem cells (DMSCs) promoted cell–cell adhesion, migration and angiogenesis of ECs, but the molecular mechanism of upstream or downstream has not been explored. So, this study aimed to explore the association between EDIL3 derived from DMSCs (DMSCs‐derived EDIL3) and psoriasis‐associated angiogenesis. We injected recombinant EDIL3 protein to mouse model of psoriasis to confirm the roles of EDIL3 in psoriasis. Besides, we employed both short‐interference RNA (si‐RNA) and lentiviral vectors to explore the molecular mechanism of EDIL3 promoting angiogenesis in psoriasis. In vivo, this research found that after injected recombination EDIL3 protein, the epidermis thickness and microvessel density were both elevated. EDIL3 accelerated the process of psoriasis in the IMQ‐induced psoriasis‐like mouse model. Additionally, we confirmed that in vitro DMSCs‐derived EDIL3 is involved in the tube formation of ECs via αvβ3‐FAK/MEK/ERK signal pathway. This suggested that DMSCs‐derived EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway in ECs play an important role in the pathogenesis of psoriasis. And the modification of DMSCs, EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway will provide a valuable therapeutic target to control the angiogenesis in psoriasis.  相似文献   

5.
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19.  相似文献   

6.
7.
Hypoxia is a common denominator of many vascular disorders, especially those associated with ischemia. To study the effect of oxygen depletion on endothelium, we developed an in vitro model of hypoxia on human umbilical vein endothelial cells (HUVEC). Hypoxia strongly activates HUVEC, which then synthesize large amounts of prostaglandins and platelet‐activating factor. The first step of this activation is a decrease in ATP content of the cells, followed by an increase in the cytosolic calcium concentration ([Ca2+]i) which then activates the phospholipase A2 (PLA2). The link between the decrease in ATP and the increase in [Ca2+]i was not known and is investigated in this work. We first showed that the presence of extracellular Na+ was necessary to observe the hypoxia‐induced increase in [Ca2+]i and the activation of PLA2. This increase was not due to the release of Ca2+ from intracellular stores, since thapsigargin did not inhibit this process. The Na+/Ca2+ exchanger was involved since dichlorobenzamil inhibited the [Ca2+]i and the PLA2 activation. The glycolysis was activated, but the intracellular pH (pHi) in hypoxic cells did not differ from control cells. Finally, the hypoxia‐induced increase in [Ca2+]i and PLA2 activation were inhibited by phlorizin, an inhibitor of the Na+‐glucose cotransport. The proposed biochemical mechanism occurring under hypoxia is the following: glycolysis is first activated due to a requirement for ATP, leading to an influx of Na+ through the activated Na+‐glucose cotransport followed by the activation of the Na+/Ca2+ exchanger, resulting in a net influx of Ca2+. J. Cell. Biochem. 84: 115–131, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

8.
The interaction of cells with fibronectin generates a series of complex signaling events that serve to regulate several aspects of cell behavior, including growth, differentiation, adhesion, and motility. The formation of a fibronectin matrix is a dynamic, cell-mediated process that involves both ligation of the α5β1 integrin with the Arg-Gly-Asp (RGD) sequence in fibronectin and binding of the amino terminus of fibronectin to cell surface receptors, termed “matrix assembly sites,” which mediate the assembly of soluble fibronectin into insoluble fibrils. Our data demonstrate that the amino-terminal type I repeats of fibronectin bind to the α5β1 integrin and support cell adhesion. Furthermore, the amino terminus of fibronectin modulates actin assembly, focal contact formation, tyrosine kinase activity, and cell migration. Amino-terminal fibronectin fragments and RGD peptides were able to cross-compete for binding to the α5β1 integrin, suggesting that these two domains of fibronectin cannot bind to the α5β1 integrin simultaneously. Cell adhesion to the amino-terminal domain of fibronectin was enhanced by cytochalasin D, suggesting that the ligand specificity of the α5β1 integrin is regulated by the cytoskeleton. These data suggest a new paradigm for integrin-mediated signaling, where distinct regions within one ligand can modulate outside-in signaling through the same integrin.  相似文献   

9.
Atherosclerotic vascular calcification contributes to increased risk of death in patients with cardiovascular diseases. Assessing the type and severity of inflammation is crucial in the treatment of numerous cardiovascular conditions. IL-1β, a potent proinflammatory cytokine, plays diverse roles in the pathogenesis of atherosclerotic vascular calcification. Several large-scale, population cohort trials have shown that the incidence of cardiovascular events is clinically reduced by the administration of anti-IL-1β therapy. Anti-IL-1β therapy might reduce the incidence of cardiovascular events by affecting atherosclerotic vascular calcification, but the mechanism underlying this effect remains unclear. In this review, we summarize current knowledge on the role of IL-1β in atherosclerotic vascular calcification, and describe the latest results reported in clinical trials evaluating anti-IL-1β therapies for the treatment of cardiovascular diseases. This review will aid in improving current understanding of the pathophysiological roles of IL-1β and mechanisms underlying its activity.  相似文献   

10.
11.
Endothelium protection is critical, because of the impact of vascular leakage and edema on pathological conditions such as brain ischemia. Whereas deficiency of class II phosphoinositide 3‐kinase alpha (PI3KC2α) results in an increase in vascular permeability, we uncover a crucial role of the beta isoform (PI3KC2β) in the loss of endothelial barrier integrity following injury. Here, we studied the role of PI3KC2β in endothelial permeability and endosomal trafficking in vitro and in vivo in ischemic stroke. Mice with inactive PI3KC2β showed protection against vascular permeability, edema, cerebral infarction, and deleterious inflammatory response. Loss of PI3KC2β in human cerebral microvascular endothelial cells stabilized homotypic cell–cell junctions by increasing Rab11‐dependent VE‐cadherin recycling. These results identify PI3KC2β as a potential new therapeutic target to prevent aggravating lesions following ischemic stroke.  相似文献   

12.
In the present study, we demonstrate the regulatory effects and mechanism of broussonin A and B, diphenylpropane derivatives isolated from Broussonetia kazinoki, on vascular endothelial growth factor‐A (VEGF‐A)–stimulated endothelial cell responses in vitro and microvessel sprouting ex vivo. Treatment with broussonin A or B suppressed VEGF‐A‐stimulated endothelial cell proliferation by regulating the expression of cell cycle–related proteins and the phosphorylation status of retinoblastoma protein. In addition, treatment with broussonin A or B abrogated VEGF‐A‐stimulated angiogenic responses including endothelial cell migration, invasion, tube formation and microvessel formation from rat aortic rings. These anti‐angiogenic activities of broussonin A and B were mediated through inactivation of VEGF‐A‐stimulated downstream signalling pathways, localization of vascular endothelial‐cadherin at cell‐cell contacts, and down‐regulation of integrin β1 and integrin‐liked kinase. Furthermore, treatment with broussonin A or B inhibited proliferation and invasion of non–small cell lung cancer and ovarian cancer cells. Taken together, our findings suggest the pharmacological potential of broussonin A and B in the regulation of angiogenesis, cancer cell growth and progression.  相似文献   

13.
14.
15.
Sustained hyperglycaemia and hyperlipidaemia incur endoplasmic reticulum stress (ER stress) and reactive oxygen species (ROS) overproduction in pancreatic β‐cells. ER stress or ROS causes c‐Jun N‐terminal kinase (JNK) activation, and the activated JNK triggers apoptosis in different cells. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an inducible multi‐stress response factor. The aim of this study was to explore the role of NR4A1 in counteracting JNK activation induced by ER stress or ROS and the related mechanism. qPCR, Western blotting, dual‐luciferase reporter and ChIP assays were applied to detect gene expression or regulation by NR4A1. Immunofluorescence was used to detect a specific protein expression in β‐cells. Our data showed that NR4A1 reduced the phosphorylated JNK (p‐JNK) in MIN6 cells encountering ER stress or ROS and reduced MKK4 protein in a proteasome‐dependent manner. We found that NR4A1 increased the expression of cbl‐b (an E3 ligase); knocking down cbl‐b expression increased MKK4 and p‐JNK levels under ER stress or ROS conditions. We elucidated that NR4A1 enhanced the transactivation of cbl‐b promoter by physical association. We further confirmed that cbl‐b expression in β‐cells was reduced in NR4A1‐knockout mice compared with WT mice. NR4A1 down‐regulates JNK activation by ER stress or ROS in β‐cells via enhancing cbl‐b expression.  相似文献   

16.
Recent reports show that the natural β-diketone curcumin displays important biological properties regarding the intercellular adhesion molecule-1 (ICAM-1), which plays a critical role in the immune responses and inflammation. In this study the ICAM-1 inhibitory activity of β-diketone compounds, which are curcumin models lacking aromatic peripheral hydroxyl and methoxy groups, along with some metal derivatives is investigated. β-Diketones are systematically more active than metal complexes and the best obtained inhibition is 75% for both groups. The best inhibitors are 4-benzoyl-3-methyl-1-phenyl-pyrazol-5-one (HQPh) among the ligands, and sodium benzoylacetonato among metal derivatives. These results appear in line with the reported antitumor activity of related species. Since 4-acyl-5-pyrazolones posses four tautomeric forms, those corresponding to HQPh were investigated using density functional theory. Docking of all HQPh tautomers on ICAM-1 protein was performed suggesting one keto-enol form favored to act in biological environment.  相似文献   

17.
18.
目的: 探讨抑制lncRNA PVT1对高糖诱导的血管内皮细胞的增殖,凋亡和氧化应激的影响。方法: 体外培养人脐静脉内皮细胞(HUVECs),分为四组:对照组(5.5 mmol/L葡萄糖),高糖组(30 mmol/L葡萄糖),高糖+siNC组(30 mmol/L葡萄糖+siNC,细胞转染阴性对照组),高糖+siPVT1组(30 mmol/L葡萄糖+siPVT1,抑制lncRNA PVT1组)。采用荧光定量PCR的方法检测转染后PVT1的表达水平。MTT检测siPVT1(短片段干扰RNA PVT1)对高糖诱导的HUVECs细胞增殖能力的影响。流式细胞术检测siPVT1对高糖诱导的HUVECs细胞ROS和凋亡水平。Western blot检测HUVECs细胞中凋亡相关蛋白如Bax,Bcl-2和cleaved-caspase-3的表达水平。结果: 与对照组比较,转染siPVT1后,PVT1的表达水平显著降低(P<0.05)。MTT结果显示,与对照组比较,培养24 h和48 h后高糖组中HUVECs细胞增殖活力均显著降低,与高糖+siNC组(阴性对照组)比较,培养24 h和48 h后,高糖+siPVT1组中的HUVECs细胞增殖活力显著增加(P<0.05)。流式细胞术检测结果表明,与对照组比较,高糖组HUVECs细胞中ROS和凋亡率均显著增加;和高糖+siNC组比较,高糖+siPVT1组中HUVECs细胞中ROS和凋亡率均有减少(P<0.05)。Western blot结果表明,与对照组比较,高糖组中cleaved-caspase-3和Bax表达水平均显著上调,Bcl-2的表达水平显著下调(P<0.05,P<0.01)。与高糖+siNC组比较,高糖+siPVT1组cleaved-caspase-3和Bax表达水平显著下调,Bcl-2的表达显著上调(P<0.05,P<0.01)。结论: 抑制lncRNA PVT1可以显著增加高糖诱导的HUVECs细胞增殖活力,减轻氧化应激,抑制细胞凋亡。  相似文献   

19.
Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)–induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor‐α (TNF‐α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2–related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase‐3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress‐induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.  相似文献   

20.
Cerebral autosomal‐dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a familial fatal progressive degenerative disorder. One of the pathological hallmarks of CADASIL is a dramatic reduction of vascular smooth muscle cells (VSMCs) in cerebral arteries. Using VSMCs from the vasculature of the human umbilical cord, placenta and cerebrum of CADASIL patients, we found that CADASIL VSMCs had a lower proliferation rate compared to control VSMCs. Exposure of control VSMCs and endothelial cells (ECs) to media derived from CADASIL VSMCs lowered the proliferation rate of all cells examined. By quantitative RT‐PCR analysis, we observed increased Transforming growth factor‐β (TGFβ) gene expression in CADASIL VSMCs. Adding TGFβ‐neutralizing antibody restored the proliferation rate of CADASIL VSMCs. We assessed proliferation differences in the presence or absence of TGFβ‐neutralizing antibody in ECs co‐cultured with VSMCs. ECs co‐cultured with CADASIL VSMCs exhibited a lower proliferation rate than those co‐cultured with control VSMCs, and neutralization of TGFβ normalized the proliferation rate of ECs co‐cultured with CADASIL VSMCs. We suggest that increased TGFβ expression in CADASIL VSMCs is involved in the reduced VSMC proliferation in CADASIL and may play a role in situ in altered proliferation of neighbouring cells in the vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号