首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
 Daudi Burkitt’s lymphoma cells, unlike other tumor cell lines, stimulate human T cells coexpressing the variable (V) region genes TCRG-V9 and V TCRD-V2 to proliferate and secrete lymphokines. Hybrids, derived by the fusion of Daudi cells with the human melanoma cell line MZ2-MEL 2.2, retain the morphology of melanoma cells. Unlike the parental melanoma cell line, these Daudi × MZ2-MEL 2.2 hybrids stimulate secretion of tumor necrosis factor (TNF) and granulocyte/macrophage colony stimulating factor (GM-CSF) by CD4-positive Vγ9/Vδ2 T-cell clones. Whereas the stimulator phenotype of Daudi cells behaves as a dominant trait in Daudi × melanoma hybrids, the expression of B-cell differentiation markers is suppressed. Thus, the γ/δ T-cell ligand expressed by Daudi cells behaves as a dominant tumor antigen in Daudi × melanoma hybrids and is unrelated to the differentiated B-cell phenotype. Dominant expression of the Daudi ligand for human Vγ9/Vδ2 T cells in these hybrids may provide a basis for defining the stimulatory principle at the molecular level. Received: 2 May 1996 / Revised: 15 July 1996  相似文献   

2.
Myeloid-derived suppressor cells (MDSC) are a group of immature inhibitory cells of bone marrow origin. Human γδ T cells (mainly Vγ9Vδ2 T cells) have emerged as dominant candidates for cancer immunotherapy because of their unique recognition pattern and broad killing activity against tumor cells. Intestinal mucosal intraepithelial lymphocytes are almost exclusively γδ T cells, so it plays an important role in inhibiting the development of colorectal cancer. In this study, we investigated the effects and molecular mechanism of human MDSC on anticolorectal cancer cells activity of Vγ9Vδ2 T cells. Our results suggested that MDSC can reduce the NKG2D expression of Vγ9Vδ2 T cells through direct cell–cell contact, which is associated with membrane-type transforming growth factor-β. In contrast, MDSC can increase Vγ9Vδ2 T cells activation and production of IFN-γ, perforin, Granzyme B through direct cell–cell contact. This may be related to the upregulation of T-bet in Vγ9Vδ2 T cells by MDSC. However, MDSC had a dominant negative regulatory effect on the anticolorectal cancer cells activity of Vγ9Vδ2 T cells. Our study provides a theoretical basis for the immune regulatory function of human MDSC on γδ T cells. This will be conducive to the clinical development of a new antitumor therapy strategy.  相似文献   

3.
Vγ9Vδ2 T cells play a major role as effector cells of innate immune responses against microbes, stressed cells, and tumor cells. They constitute <5% of PBLs but can be expanded by zoledronic acid (ZA)-treated monocytes or dendritic cells (DC). Much less is known about their ability to act as cellular adjuvants bridging innate and adaptive immunity, especially in patients with cancer. We have addressed this issue in multiple myeloma (MM), a prototypic disease with several immune dysfunctions that also affect γδ T cells and DC. ZA-treated MM DC were highly effective in activating autologous γδ T cells, even in patients refractory to stimulation with ZA-treated monocytes. ZA inhibited the mevalonate pathway of MM DC and induced the intracellular accumulation and release into the supernatant of isopentenyl pyrophosphate, a selective γδ T cell activator, in sufficient amounts to induce the proliferation of γδ T cells. Immune responses against the tumor-associated Ag survivin (SRV) by MHC-restricted, SRV-specific CD8(+) αβ T cells were amplified by the concurrent activation of γδ T cells driven by autologous DC copulsed with ZA and SRV-derived peptides. Ancillary to the isopentenyl pyrophosphate-induced γδ T cell proliferation was the mevalonate-independent ZA ability to directly antagonize regulatory T cells and downregulate PD-L2 expression on the DC cell surface. In conclusion, ZA has multiple immune modulatory activities that allow MM DC to effectively handle the concurrent activation of γδ T cells and MHC-restricted CD8(+) αβ antitumor effector T cells.  相似文献   

4.
Human Vγ9Vδ2 T cells are a unique T-cell type, and data from recent studies of Vγ9Vδ2 T cells emphasize their potential relevance to cancer immunotherapy. Vγ9Vδ2 T cells exhibit dual properties since they are both antigen-presenting cells and cytotoxic toward cancer cells. The majority of Vγ9Vδ2 T cells are double-negative for the co-receptors CD4 and CD8, and only 20–30% express CD8. Even though they are mostly neglected, a small fraction of Vγ9Vδ2 T cells also express the co-receptor CD4. Here the authors show that CD4+ Vγ9Vδ2 T cells comprise 0.1–7% of peripheral blood Vγ9Vδ2 T cells. These cells can be expanded in vitro using zoledronic acid, pamidronic acid or CD3 antibodies combined with IL-2 and feeder cells. Unlike most conventional CD4+ αβ T cells, CD4+ Vγ9Vδ2 T cells are potently cytotoxic and can kill cancer cells, which is here shown by the killing of cancer cell lines of different histological origins, including breast cancer, prostate cancer and melanoma cell lines, upon treatment with zoledronic acid. Notably, the killing capacity of CD4+ Vγ9Vδ2 T cells correlates with co-expression of CD56.  相似文献   

5.
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the 2-C-methyl-d-erythritol-4-phosphate pathway used by microbes, and isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway used by humans. Aminobisphosphonates and alkylamines indirectly stimulate Vγ2Vδ2 cells by inhibiting farnesyl diphosphate synthase (FDPS) in the mevalonate pathway, thereby increasing IPP/triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester that directly stimulate. In this study, we further characterize stimulation by these compounds and define pathways used by new classes of compounds. Consistent with FDPS inhibition, stimulation of Vγ2Vδ2 cells by aminobisphosphonates and alkylamines was much more sensitive to statin inhibition than stimulation by prenyl pyrophosphates; however, the continuous presence of aminobisphosphonates was toxic for T cells and blocked their proliferation. Aminobisphosphonate stimulation was rapid and prolonged, independent of known Ag-presenting molecules, and resistant to fixation. New classes of stimulatory compounds-mevalonate, the alcohol of HMBPP, and alkenyl phosphonates-likely stimulate differently. Mevalonate, a rate-limiting metabolite, appears to enter cells to increase IPP levels, whereas the alcohol of HMBPP and alkenyl phosphonates are directly recognized. The critical chemical feature of bisphosphonates is the amino moiety, because its loss switched aminobisphosphonates to direct Ags. Transfection of APCs with small interfering RNA downregulating FDPS rendered them stimulatory for Vγ2Vδ2 cells and increased cellular IPP. Small interfering RNAs for isopentenyl diphosphate isomerase functioned similarly. Our results show that a variety of manipulations affecting isoprenoid metabolism lead to stimulation of Vγ2Vδ2 T cells and that pulsing aminobisphosphonates would be more effective for the ex vivo expansion of Vγ2Vδ2 T cells for adoptive cancer immunotherapy.  相似文献   

6.
Combinations of cellular immune-based therapies with chemotherapy and other antitumour agents may be of significant clinical benefit in the treatment of many forms of cancer. Gamma delta (γδ) T cells are of particular interest for use in such combined therapies due to their potent antitumour cytotoxicity and relative ease of generation in vitro. Here, we demonstrate high levels of cytotoxicity against solid tumour-derived cell lines with combination treatment utilizing Vγ9Vδ2 T cells, chemotherapeutic agents and the bisphosphonate, zoledronate. Pre-treatment with low concentrations of chemotherapeutic agents or zoledronate sensitized tumour cells to rapid killing by Vγ9Vδ2 T cells with levels of cytotoxicity approaching 90%. In addition, zoledronate enhanced the chemotherapy-induced sensitization of tumour cells to Vγ9Vδ2 T cell cytotoxicity resulting in almost 100% lysis of tumour targets in some cases. Vγ9Vδ2 T cell cytotoxicity was mediated by perforin following TCR-dependent and isoprenoid-mediated recognition of tumour cells. Production of IFN-γ by Vγ9Vδ2 T cells was also induced after exposure to sensitized targets. We conclude that administration of Vγ9Vδ2 T cells at suitable intervals after chemotherapy and zoledronate may substantially increase antitumour activities in a range of malignancies. Financial support and conflicts of interest: This study was supported by grants from Medinet (Japan), and Suncorp Metway and Gallipoli Research Foundation (Australia). No financial or commercial interests arise from this study. Informed consent: This study was approved by Human Research Ethics Committees of the University of Queensland and Greenslopes Private Hospital and informed consent was obtained from all subjects.  相似文献   

7.
Vγ9Vδ2 T cells are attractive candidates for antileukemic activity. The analysis of Vγ9Vδ2 T cells in newly diagnosed acute myeloid leukemia (AML) patients revealed that their absolute cell numbers were normal in the blood as well as in the bone marrow but showed a striking imbalance in the differentiation subsets, with preponderance of the effector memory population. This unusual phenotype was restored after removal of leukemic cells in patients, which reached complete remission after chemotherapy, suggesting that leukemic cells might be involved in the alteration of γδ T cell development in AML. Accordingly, coculture between AML cells and Vγ9Vδ2 T cells induced selection of effector cells. In accordance with their effector memory status, in vitro proliferation of Vγ9Vδ2 T cells was reduced compared with normal controls. Nevertheless, Vγ9Vδ2 T cells efficiently killed autologous AML blasts via the perforin/granzyme pathway. The ligands for DNAM-1 were expressed by AML cells. We showed that killing of AML blasts was TCR and DNAM-1 dependent. Using a xenotransplantation murine model, we showed that Vγ9Vδ2 T cells homed to the bone marrow in close proximity of engrafted leukemic cells and enhanced survival. These data demonstrate that Vγ9Vδ2 T cells are endowed with the ability to interact with and eradicate AML blasts both in vitro and in a mouse model. Collectively, our data revealed that Vγ9Vδ2 T cells have a potent antileukemic activity provided that optimal activation is achieved, such as with synthetic TCR agonists. This study enhances the interest of these cells for therapeutic purposes such as AML treatment.  相似文献   

8.
Qin G  Liu Y  Zheng J  Ng IH  Xiang Z  Lam KT  Mao H  Li H  Peiris JS  Lau YL  Tu W 《Journal of virology》2011,85(19):10109-10116
γδ T cells are essential constituents of antimicrobial and antitumor defenses. We have recently reported that phosphoantigen isopentenyl pyrophosphate (IPP)-expanded human Vγ9Vδ2 T cells participated in anti-influenza virus immunity by efficiently killing both human and avian influenza virus-infected monocyte-derived macrophages (MDMs) in vitro. However, little is known about the noncytolytic responses and trafficking program of γδ T cells to influenza virus. In this study, we found that Vγ9Vδ2 T cells expressed both type 1 cytokines and chemokine receptors during influenza virus infection, and IPP-expanded cells had a higher capacity to produce gamma interferon (IFN-γ). Besides their potent cytolytic activity against pandemic H1N1 virus-infected cells, IPP-activated γδ T cells also had noncytolytic inhibitory effects on seasonal and pandemic H1N1 viruses via IFN-γ but had no such effects on avian H5N1 or H9N2 virus. Avian H5N1 and H9N2 viruses induced significantly higher CCL3, CCL4, and CCL5 production in Vγ9Vδ2 T cells than human seasonal H1N1 virus. CCR5 mediated the migration of Vγ9Vδ2 T cells toward influenza virus-infected cells. Our findings suggest a novel therapeutic strategy of using phosphoantigens to boost the antiviral activities of human Vγ9Vδ2 T cells against influenza virus infection.  相似文献   

9.
Background aimsThere is increasing interest in using γδ T cells (GDTC) for cancer immunotherapy. Most studies have been concerned with the Vδ2 subset in blood, for which several expansion protocols exist. We have developed a protocol to expand Vδ1 and Vδ2 preferentially from human blood. We have characterized these subsets and their specificities for leukemic targets.MethodsGDTC were isolated from the peripheral blood mononuclear cells (PBMC) of healthy donors via positive magnetic cell sorting; their proliferation in vitro was induced by exposure to the mitogen concanavalin A (Con A). CD107 and cytotoxicity (Cr51-release and flow cytometric) assays were performed. GDTC clones and target cells were immunophenotyped via flow cytometry.ResultsLonger initial exposure to Con A typically resulted in higher Vδ1 prevalence. Vδ1 were activated by and cytotoxic to B-cell chronic lymphocytic leukemia (B-CLL)-derived MEC1 cells, whereas Vδ2 also responded to MEC1 but more so to the Philadelphia chromosome-positive [Ph+] leukemia cell line EM-enhanced green fluorescent protein (2eGFPluc). Vδ2 clone cytotoxicity against EM-2eGFPluc correlated with Vδ2 T-cell antigen receptor (TCR) and receptor found on Natural Killer cells and many T-cells (NKG2D), whereas Vδ1 clone cytotoxicity versus MEC1 correlated with Vδ1 TCR, CD56 and CD95 expression. Vδ1 also killed Epstein-Barr Virus (EBV)-negative B-CLL-derived TMD2 cells. Immunophenotyping revealed reduced HLA-ABC expression on EM-2eGFPluc, whereas MEC1 and TMD2 exhibited higher Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAILR1).ConclusionsOur ability to expand peripheral Vδ1 cells and show their cytotoxicity to B-CLL-derived cell lines suggests that this novel approach to the cellular treatment of B-CLL may be feasible.  相似文献   

10.
11.
Hepatocellular carcinoma (HCC) and colorectal carcinoma with hepatic metastases (mCRC) are cancers with poor prognosis and limited therapeutic options. New approaches are needed and adoptive immunotherapy with Vγ9Vδ2 T lymphocytes represents an attractive strategy. Indeed, Vγ9Vδ2 T cells were shown to exhibit efficient lytic activity against various human tumor cell lines, and in vitro Vγ9Vδ2 T expansion protocol based on single phosphoantigen stimulation could be easily performed for healthy donors. However, a low proliferative response of Vγ9Vδ2 T cells was observed in about half of the cancer patients, leading to an important limitation in the development of Vγ9Vδ2 T cell-based immunotherapy. Here, for the first time in the context of cancer patients, Vγ9Vδ2 T cell expansions were performed by co-culturing peripheral blood mononuclear cell (PBMCs) with autologous dendritic cells (DCs) pretreated with aminobisphosphonate zoledronate. For patients not responding to the conventional culture protocol, co-culture of PBMC with zoledronate-pretreated DCs induced strong cell expansion and allowed reaching a minimal rate of purity of 70% of Vγ9Vδ2 T cells. The potent immunostimulatory activity of zoledronate-treated DCs was associated with higher amount of isopentenyl pyrophosphate (IPP) in the culture and was correlated with better ability to activate Vγ9Vδ2 T cells as measured by IFN-γ production. Moreover, we demonstrated that the cytotoxic level of Vγ9Vδ2 T cells against freshly autologous tumor cells isolated from patients could be significantly increased by pretreating the tumor cells with zoledronate. Thus, this method of generating Vγ9Vδ2 T cells leads eligible for Vγ9Vδ2 T cell adoptive immunotherapy the HCC and mCRC patients.  相似文献   

12.
<正>Since the first murine and human embryonic stem cell lines were established by Drs. Evans and Kaufman [1] and Thomson et al. [2], respectively, great progress has been make in the field of  相似文献   

13.
In this study, we demonstrated that lipopolysaccharide (LPS) markedly increased nitric oxide (NO) production and indoleamine 2,3-dioxygenase (IDO) activity in mouse peritoneal cells in the presence of activated Vα14 natural killer T cells. Moreover, LPS-induced NO production in peritoneal cells from IDO-knockout (KO) mice was more increased than that from wild-type mice. However, there was no significant difference in the expression of inducible nitric oxide synthase (iNOS) mRNA and protein between the wild-type and IDO-KO mice. No significant difference was also observed in the ratio of CD3- and DX5-positive cells and F4/80- and TLR4-positive cells in peritoneal cells between the wild-type and IDO-KO mice. Since the IDO activity was enhanced by an NO inhibitor, NO may be post-translationally consumed by inhibiting the IDO activity. IDO is well known to play an important role in immunosuppression during inflammatory disease. Therefore, the inhibition of IDO by NO may exacerbate inflammation in the peritoneal cavity.  相似文献   

14.
We have previously shown that invariant Vα19-Jα33 TCR(+) (Vα19i T) cells suppress the disease progress in some models for organ specific autoimmune diseases and type IV allergy that deteriorate along with decline to excess in Th1- or Th17- immunity. In this study, we examined the effects of over-generation of Vα19i T cells on the Th2-controlled immunoglobulin isotype production in the models for type I allergy. IgE production by invariant Vα19-Jα33 TCR transgenic (Tg) mice was suppressed compared with that by non-Tg controls following administration with goat anti-mouse IgD antiserum or OVA, while IgG2a production was not influenced by the introduction of the transgene into the recipients. IgE production by wild type mice was similarly reduced when they were subjected to adoptive transfer with invariant Vα19-Jα33 TCR Tg(+) but not Tg(-) cells prior to immunization. Furthermore, the suppression of IgE production by these recipients was enhanced when they were previously administered with a Vα19i T cell activator, one of the modified α-mannosyl ceramides. In summary, it is suggested that Vα19i T cells have potential to participate in the homeostasis of immunity and that they suppress disease progression resulting from not only Th1- but also Th2- immunity excess.  相似文献   

15.
Mammalian Müller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Müller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Müller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Müller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Müller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture.  相似文献   

16.
Vγ9Vδ2 T cells respond to pyrophosphate antigens and display potent antitumour activity in vitro. We have investigated the potential of the most potent phosphoantigen known to activate Vγ9Vδ2 T cells, (E)-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP), as an adjuvant for dendritic cell (DC)-based vaccines. A single stimulation of peripheral blood mononuclear cells with HMB-PP and IL-2 was sufficient to generate lines of effector memory Vγ9Vδ2 T cells that retained their cytolytic and cytokine secretion activities. These cells induced differentiation of DC into semi-mature antigen-presenting cells expressing CD86, CD11c, CD54, HLA-DR, CD83 and CD40, which secreted low levels of bioactive IL-12 but no IL-10. Vγ9Vδ2 T cells also strongly costimulated IL-12 release but inhibited IL-10 production by lipopolysaccharide (LPS)-stimulated DC. When substituted for Vγ9Vδ2 T cells, IFN-γ did not induce full DC maturation but it augmented IL-12 and inhibited IL-10 release by LPS-stimulated DC, in a manner similar to HMB-PP-activated Vγ9Vδ2 T cells. Our findings indicate that Vγ9Vδ2 T cells, stimulated with nanomolar concentrations of HMB-PP, strongly promote T helper type 1 (Th1) responses through their ability to induce DC maturation and IL-12 secretion. This adjuvant activity may prove useful in DC-based cancer therapies.  相似文献   

17.
Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system mediated by T cells bearing TCR of restricted heterogeneity. Thus, in the murine PL strain, V beta-8.2 is used by 80% of the encephalitogenic T cells. This observation has led to the successful prevention and reversal of EAE by the in vivo use of mAb directed to these restricted gene products. In SJL mice, the V beta-17a gene product has been shown to be used by approximately 50% of encephalitogenic T cells subsequent to immunization with a myelin basic protein (MBP)-derived peptide. However, the other V beta genes used by encephalitogenic T cells in SJL EAE have remained uncharacterized. We now report, for the first time, the beta-chain-encoding DNA sequence of two encephalitogenic, MBP-reactive, SJL-derived T cell clones. These clones which are specific for H-2s and the carboxyl-terminus (amino acid 92-103) of MBP, use TCR encoded by V beta-4. In addition, we demonstrate that the transfer of EAE by a heterogenous SJL-derived encephalitogenic T cell line can be prevented using an anti-V beta-4 antibody in vivo. V beta-4 usage has been previously described in a H-2u/MBP amino-terminus-reactive encephalitogenic T cell. The present findings may thus further support the "V region-disease" hypothesis.  相似文献   

18.
Adherence to cells and matrices participates in lymphocyte migration and tissue localization and contributes to the regulation of growth and differentiation of the lymphoid cells. The adherence is mainly mediated by three families of cell-surface proteins: integrins, immunoglobulin (Ig)-related molecules, and selectins. Integrins recognize Ig-related molecules such as ICAMs as well as fibronectin (FN), vitronectin (VN), and other matrix proteins. In this study, the in vitro adhesive properties of two Epstein—Barr virus-carrying B lymphoblastoid cell lines, IB-4 and NAD-20, were compared. IB-4 cells grow as a monolayer in contrast to NAD-20 cells, which grow as cell clusters. IB-4 cells were found to adhere to the tissue culture vessel through a component of the fetal bovine serum. By using blocking monoclonal antibodies to cell-surface molecules and serum proteins, IB-4 cells were found to use αVβ3 integrin (CD51/CD61) and serum VN as the adhesive molecules. αVβ3 integrin also mediated adhesion of IB-4 cells to human serum VN and to purified VN and FN. This constitutive adherence was not enhanced by phorbol ester treatment and was inhibited by RGD-containing peptides, in contrast to the homotypic adhesion of NAD-20 cells, which was mediated by β2 integrin CD11a/CD18 and its ligand ICAM-1 (CD54). Since VN is a component of both lymphoid tissue matrix and plasma, adhesion to this protein may affect functions and activities of B lymphocytes.  相似文献   

19.
The Vγ4(+) cells, a subpopulation of peripheral γδ T cells, are involved in West Nile virus (WNV) pathogenesis, but the underlying mechanism remains unclear. In this study, we found that WNV-infected Vγ4(+) cell-depleted mice had lower viremia and a reduced inflammatory response in the brain. The Vγ4(+) cells produced IL-17 during WNV infection, but blocking IL-17 signaling did not affect host susceptibility to WNV encephalitis. We also noted that there was an enhanced magnitude of protective splenic Vγ1(+) cell expansion in Vγ4(+) cell-depleted mice compared to that in controls during WNV infection. In addition, Vγ4(+) cells of WNV-infected mice had a higher potential for producing TGF-β. The γδ T cells of WNV-infected Vγ4(+) cell-depleted mice had a higher proliferation rate than those of WNV-infected controls upon ex vivo stimulation with anti-CD3, and this difference was diminished in the presence of TGF-β inhibitor. Finally, Vγ4(+) cells of infected mice contributed directly and indirectly to the higher level of IL-10, which is known to play a negative role in immunity against WNV infection. In summary, Vγ4(+) cells suppress Vγ1(+) cell expansion via TGF-β and increase IL-10 level during WNV infection, which together may lead to higher viremia and enhanced brain inflammation.  相似文献   

20.
N-Acetylglucosaminyltransferase V (GnT-V), catalyzing β1-6 branching in asparagine-linked oligosaccharides, is one of the most important glycosyltransferases involved in tumor metastasis and carcinogenesis. Although the expression of GnT-V is induced in chronic liver diseases, the biological meaning of GnT-V in the diseases remains unknown. The aim of this study was to investigate the effects of GnT-V on the progression of chronic hepatitis, using GnT-V transgenic (Tg) mice fed a high fat and high cholesterol (HFHC) diet, an experimental model of murine steatohepatitis. Although enhanced hepatic lymphocytes infiltration and fibrosis were observed in wild-type (WT) mice fed the HFHC diet, they were dramatically prevented in Tg mice. In addition, the gene expression of inflammatory Th1 cytokines in the liver was significantly decreased in Tg mice than WT mice. Inhibition of liver fibrosis was due to the dysfunction of hepatic stellate cells (HSCs), which play pivotal roles in liver fibrosis through the production of transforming growth factor (TGF)-β1. Although TGF-β1 signaling was enhanced in Tg mouse-derived HSCs (Tg-HSCs) compared with WT mouse-derived HSCs (WT-HSCs), collagen expression was significantly reduced in Tg-HSCs. As a result from DNA microarray, cyclooxygenase-2 (COX2) expression, known as a negative feedback signal for TGF-β1, was significantly elevated in Tg-HSCs compared with WT-HSCs. Prostaglandin E2 (PGE2), the product of COX2, production was also significantly elevated in Tg-HSCs. COX2 inhibition by celecoxib decreased PGE2 and increased collagen expression in Tg-HSCs. In conclusion, GnT-V prevented steatohepatitis progression through modulating lymphocyte and HSC functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号