首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The efficient propagation of the OK strain of the B variant of human herpesvirus 6 (HHV-6B) was demonstrated in a line of T cells, TaY, established from the peripheral blood lymphocytes of a patient with adult T-cell leukemia/lymphoma (ATL). Growth of TaY cells depends on the presence of IL-2 and the cells harbor HTLV-I genomes. A severe cytopathic effect (CPE) was observed in many HHV-6B(OK)-infected TaY cells one week after infection. The release of virus from HHV-6B(OK)-infected TaY cells [TaY(OK)] was first detected after three days and increased rapidly for up to seven days after infection, as demonstrated by PCR. The titer of HHV-6B(OK) in the supernatant was comparable to the value of 10(3.5) TCID50/ml obtained with PHA-activated cord blood lymphocytes (CBL) that had been infected with HHV-6B(OK). The replication of the virus was shown to depend to a considerable extent on cell viability. Electron microscopy revealed many herpesvirus-type capsid- and enveloped-viruses in the nuclei and cytoplasm of degenerated cells in TaY(OK) cultures. The U1102 strain of HHV-6A and the Z29 strain of HHV-6B also infected TaY cells productively, as detected by PCR and an immunofluorescence test. These results suggest that the activation of CD4+ T lymphocytes with mitogens such as PHA or IL-2 and the expression of some cellular gene or the HTLV-I gene might be essential for efficient propagation of HHV-6B. TaY cells should play an important role in future investigations of cell-virus interactions and genetic variations or cell tropism of HHV-6 isolates since no cell line that shows propagation of both HHV-6A and HHV-6B has been reported to date.  相似文献   

2.
Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 infection induces the maturation of DCs. In addition, the antigen capture capacity of DCs was found to decrease following infection with HHV-6. In contrast to up-regulation of mature-DC-associated surface molecules on HHV-6-infected DCs, their capacity for presentation of alloantigens and exogenous virus antigens to T lymphocytes decreased significantly from that of uninfected DCs. In contrast, there appeared to be no reduction in the capacity for presentation of an HLA class II-binding peptide to the peptide-specific CD4(+) T lymphocytes. These data indicate that HHV-6 infection induces phenotypic alterations and impairs the antigen presentation capacity of DCs. The present data also suggest that the dysfunction of HHV-6-infected DCs is attributable mainly to impairment of the antigen capture and intracellular antigen-processing pathways.  相似文献   

3.
4.
Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive agent that has been suggested to act as a cofactor in the progression of human immunodeficiency virus disease. However, the lack of suitable experimental models has hampered the elucidation of the mechanisms of HHV-6-mediated immune suppression. Here, we used ex vivo lymphoid tissue to investigate the cellular tropism and pathogenic mechanisms of HHV-6. Viral strains belonging to both HHV-6 subgroups (A and B) were able to productively infect human tonsil tissue fragments in the absence of exogenous stimulation. The majority of viral antigen-expressing cells were CD4(+) T lymphocytes expressing a nonnaive phenotype, while CD8(+) T cells were efficiently infected only with HHV-6A. Accordingly, HHV-6A infection resulted in the depletion of both CD4(+) and CD8(+) T cells, whereas in HHV-6B-infected tissue CD4(+) T cells were predominantly depleted. The expression of different cellular antigens was dramatically altered in HHV-6-infected tissues: whereas CD4 was upregulated, both CD46, which serves as a cellular receptor for HHV-6, and CD3 were downmodulated. However, CD3 downmodulation was restricted to infected cells, while the loss of CD46 expression was generalized. Moreover, HHV-6 infection markedly enhanced the production of the CC chemokine RANTES, whereas other cytokines and chemokines were only marginally affected. These results provide the first evidence, in a physiologically relevant study model, that HHV-6 can severely affect the physiology of secondary lymphoid organs through direct infection of T lymphocytes and modulation of key membrane receptors and chemokines.  相似文献   

5.
魏莘  王岱 《病毒学报》1998,14(4):370-373
艾滋病(AIDS)主要是由人免疫缺陷病毒(HIV)侵入人体后,破坏人的免疫系统造成的。许多流行病学研究已证明,疱疹病毒与HIV的共感染可以导致对HIV-1启动子的激活,并加速细胞的病理性反应〔1〕,从而加大个体对HIV感染的敏感和加快疾病的进程。人疱...  相似文献   

6.
The in vitro susceptibility of several nonhuman primate species to human herpesvirus 6 (HHV-6) was investigated. Only peripheral blood mononuclear cells from chimpanzees (Pan troglodytes) were found permissive to productive infection by HHV-6, indicating that the host range of HHV-6, albeit limited, may not be restricted to Homo sapiens. However, natural HHV-6 infection in chimpanzees, as well as in the other species tested, could not be documented by serological analysis. As previously observed with human cells, HHV-6 infection of chimpanzee peripheral blood mononuclear cells was highly cytopathic and the infected cells exhibited phenotypic features of activated T lymphocytes. Although in humans the majority of HHV-6-infected lymphocytes displayed the CD4 antigen, in chimpanzees a mixed CD4+ and CD8+ phenotype was observed. HHV-6 was also shown to productively coinfect individual chimpanzee T cells with human immunodeficiency virus type 1, resulting in an accelerated induction of cytopathicity. In light of these findings, we propose the utilization of chimpanzees as a potential animal model system to investigate the in vivo interaction between HHV-6 and human immunodeficiency virus type 1 and its relevance to the development of acquired immune deficiency syndrome.  相似文献   

7.
8.
Human herpesvirus 6 (HHV-6) can activate the human immunodeficiency virus (HIV) promoter and accelerate cytopathic effects in HIV-infected human T cells. This study examines the regions of the HIV promoter required for HHV-6 transactivation in a heterogeneous population of primary human T lymphocytes with or without antigenic stimulation. Two different strains of HHV-6, GS and Z29, transactivated the HIV promoter. The GS strain transactivated the promoter in both stimulated and resting T cells, while the Z29 strain increased HIV promoter activity only in stimulated T cells. Three DNA clones containing HHV-6(GS) genomic fragments transactivated the HIV promoter in cotransfected T cells. A 21.4-kb DNA clone, pZVB70, showed the highest transactivating ability, while two other DNA fragments, pZVB10 (6.2 kb) and pZVH14 (8.7 kb), showed lower activity. One of these clones, pZVH14, activated the HIV promoter construct containing a mutation in the NF kappa B site. However, this mutated NF kappa B promoter was not transactivated during HHV-6(GS) infection or after cotransfection with pZVB70 or pZVB10. These data indicate that the NF kappa B sites of the HIV promoter are essential for its transactivation during HHV-6(GS) infection. By increasing HIV promoter activity in primary T lymphocytes, HHV-6 may consequently increase HIV replication, leading to an increase in the cytopathic effect on coinfected human T cells.  相似文献   

9.
收集婴幼儿急疹及淋巴系统增生性疾病患者外周血单个核细胞进行体外培养,从7例婴幼儿急疹及2例淋巴系统增生性疾病患者中分离出一种病毒,此病毒能在PHA激活的人脐血单个核细胞中传代生长,产生典型CPE:形成气球样巨细胞。电镜下观察,感染细胞中可见直径180nm左右,有包膜,疱疹样病毒颗粒;血清学试验证明分离株与HSV-1,2、HCMV、及EBV无抗原交叉,而与HHV-6GS株间存在抗原一致性;多聚酶链反应表明该分离株HHV-6特异性DNA阳性;综合以上结果,初步认为该分离株为HHV-6。同时还用pCR法对所收集的标本直接检测HHV-6特异性DNA。PCR法与病毒分离法相比较,前者HHV-6检出率为88.8%(16/18).后者为38.9%(7/18)。  相似文献   

10.
Peripheral blood mononuclear cells collected from 13 patients with chronic fatigue syndrome and 13 healthy controls were analyzed for the presence of human herpesvirus 6 (HHV-6) DNA by variant-specific polymerase chain reaction and dot blot hybridization. HHV-6 DNA was detected in 7 of 13 (53%) patients, and of those 7 patients, 4 were positive for HHV-6 variant A DNA and 3 were for variant B. No HHV-6 DNA was detected in the controls. Serum antibody titers to the late antigen and antibody prevalence to the early antigen of HHV-6 were significantly higher in the patient group. These results suggest active replication of HHV-6 in patients with chronic fatigue syndrome.  相似文献   

11.
The recent isolation of human herpesvirus 7 (HHV-7) from activated CD4+ T lymphocytes of a healthy individual raises questions regarding the prevalence of this virus in humans and its immunological relationship to previously characterized human herpesviruses. We report that HHV-7 is a ubiquitous virus which is immunologically distinct from the highly prevalent T-lymphotropic HHV-6. Thus, (i) only two of six monoclonal antibodies to HHV-6 cross-reacted with HHV-7-infected cells, (ii) Western immunoblot analyses of viral proteins revealed different patterns for HHV-6- and HHV-7-infected cells, (iii) tests of sequential serum samples from children revealed seroconversion to HHV-6 without concomitant seroconversion to HHV-7, and (iv) in some instances HHV-7 infection occurred in the presence of high titers of HHV-6 antibodies, suggesting the lack of apparent protection of children seropositive for HHV-6 against subsequent infection with HHV-7. On the basis of the analyses of sera from children and adults it can be concluded that HHV-7 is a prevalent human herpesvirus which, like other human herpesviruses, infects during childhood. The age of infection appears to be somewhat later than the very early age documented for HHV-6.  相似文献   

12.
13.
Herpesvirus infections can frequently lead to acute inflammation, yet the mechanisms regulating this event remain poorly understood. In order to determine some of the immunological mechanisms regulated by human herpesvirus infections, we studied the gene expression profile of lymphocytes infected with human herpesvirus 6 (HHV-6) by using a novel immunomicroarray. Our nylon-based immunomicroarray contained more than 1,150 immune response-related genes and was highly consistent between experiments. Experimentally, we found that independently of the HHV-6 strain used to infect T cells, multiple proinflammatory genes were increased and anti-inflammatory genes were decreased at the mRNA and protein levels. HHV-6 strains A and B increased expression of the genes for interleukin-18 (IL-18), the IL-2 receptor, members of the tumor necrosis factor alpha superfamily receptors, mitogen-activated protein kinase, and Janus kinase signaling proteins. As reported previously, CD4 protein levels were also increased significantly. Specific type 2 cytokines, including IL-10, its receptor, and IL-14, were downregulated by HHV-6 infection and, interestingly, amyloid precursor proteins and type 1 and 2 presenilins. Thus, T cells respond to HHV-6 infection by inducing a type 1 immune response that may play a significant role in the development and progression of diseases associated with HHV-6, including pediatric, hematologic, transplant, and neurologic disorders.  相似文献   

14.
The immune response to viral infection involves complex network of dynamic gene and protein interactions. We present here the dynamic gene network of the host immune response during human herpesvirus type 6 (HHV-6) infection in an adult T-cell leukemia cell line. Using a pathway-focused oligonucleotide DNA microarray, we found a possible association between chemokine genes regulating Th1/Th2 balance and genes regulating T-cell proliferation during HHV-6B infection. Gene network analysis using an integrated comprehensive workbench, VoyaGene, revealed that a gene encoding a TEC-family kinase, ITK, might be a putative modulator in the host immune response against HHV-6B infection. We conclude that Th2-dominated inflammatory reaction in host cells may play an important role in HHV-6B-infected T cells, thereby suggesting the possibility that ITK might be a therapeutic target in diseases related to dysregulation of Th1/Th2 balance. This study describes a novel approach to find genes related with the complex host-virus interaction using microarray data employing the Bayesian statistical framework.  相似文献   

15.
Antiviral activities of acyclovir (9-[(2-hydroxyethoxy) methyl] guanine, ACV), penciclovir (9-[4-hydroxy-3-(hydroxymethyl) butyl] guanine, PCV), ganciclovir ([9-(1,3-dihydroxy-2-propoxy) methyl] guanine, GCV), and foscarnet (phosphonoformic acid, PFA) were determined against Human Herpesvirus 6 (HHV-6) by flow cytometric technique. The technique is based on the detection of gp116 antigen expression in virus infected cells. Susceptibility was defined in terms of drug concentration which reduced the number of cells expressing HHV-6 gp116 antigen with a mean fluorescent intensity (MFI) by 50% as compared to virus infected untreated cells. GCV was found to be most effective against HHV-6 followed by PFA, PCV and ACV. For HHV-6A, the mean 50% inhibitory concentrations (IC50) of GCV and PFA were found to be 3.4 microM and 34.7 microM respectively, whereas the IC50 of ACV and PCV were found to be 53.7 microM and 37.9 microM respectively. For HHV-6B, the IC50 of GCV and PFA were found to be 5.7 microM and 71.4 microM respectively, whereas the IC50 of ACV and PCV were found to be 119.0 microM and 77.8 microM respectively. Flow cytometry is a valuable technique for the evaluation of antiviral compounds against viruses including HHV-6.  相似文献   

16.
Specific Human Herpes virus-6 (HHV-6) transfer factor (TF) preparation, administered to two chronic fatigue syndrome patients, inhibited the HHV-6 infection. Prior to treatment, both patients exhibited an activated HHV-6 infection. TF treatment significantly improved the clinical manifestations of CFS in one patient who resumed normal duties within weeks, whereas no clinical improvement was observed in the second patient. It is concluded that HHV-6 specific TF may be of significant value in controlling HHV-6 infection and related illnesses.  相似文献   

17.
Human herpesvirus 6 (HHV-6) is a lymphotropic betaherpesvirus that productively infects T cells and monocytes. HHV-6 isolates can be differentiated into two groups, variants A and B (HHV-6A and HHV-6B). Here, we show a functional difference between HHV-6A and -6B in that HHV-6A induced syncytium formation of diverse human cells but HHV-6B did not. The syncytium formation induced by HHV-6A was observed 2 h after infection; moreover, it was found in the presence of cycloheximide, indicating that HHV-6A induced fusion from without (FFWO) in the target cells. Furthermore, the fusion event was dependent on the expression of the HHV-6 entry receptor, CD46, on the target cell membrane. In addition, we determined that short consensus repeat 2 (SCR2), -3, and -4 of the CD46 ectodomain were essential for the formation of the virus-induced syncytia. Monoclonal antibodies against glycoproteins B and H of HHV-6A inhibited the fusion event, indicating that the syncytium formation induced by HHV-6A required glycoproteins H and B. These findings suggest that FFWO, which HHV-6A induced in a variety of cell lines, may play an important role in the pathogenesis of HHV-6A, not only in lymphocytes but also in various tissues, because CD46 is expressed ubiquitously in human tissues.  相似文献   

18.
Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4(+) T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4(+) T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4(+) T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses.  相似文献   

19.
The immune system includes CD4+ regulatory T (T reg) cells that play a role in self-tolerance and demonstrate functional variations that govern immune responses. HHV-6 is an important immunosuppressive virus that completely replicates in vivo and in vitro in only CD4+ T cells. However, there have been no reports of the specific T-cell subpopulation that permits the replication of this virus. Here, we evaluated the infectivity of HHV-6 to specific T-cell populations such as CD4+CD25 high, which includes the majority of T reg cells, and CD4+CD25(-). These cells were isolated from peripheral blood and then expanded. The expanded cell fractions were then infected with the HHV-6 variant B strain, and the spreads of infected cells were evaluated by immunofluorescence. Viral growth was also quantified by real-time PCR. The effects of virus infection on cytokine production from these T-cell subsets were examined using ELISA. Our results revealed that both these fractions permitted complete HHV-6 replication. Virus infection enhanced the production of both Th1- and Th2-type cytokines from CD4+CD25(-) T cells; however, only Th2-type cytokine release was augmented from viral-infected CD4+CD25 high T cells. Further, while virusinfected CD4+CD25 high T cells shift their antiviral immunity toward Th2 dominance by producing IL-10, the role of virus-infected CD4+CD25(-) T cells remains obscure.  相似文献   

20.
Human herpesvirus 8 (HHV-8) (or Kaposi's sarcoma-associated herpesvirus) is implicated in the etiopathogenesis of Kaposi's sarcoma (KS) and certain lymphoproliferations. The introduction of more effective therapies to treat human immunodeficiency virus infection has led to a decline in the incidence of KS and also in the resolution of KS in those already affected. This suggests that cellular immune responses including cytotoxic T lymphocytes (CTLs) could play a vital role in the control of HHV-8 infection and in KS pathogenesis. Here we elucidate HLA class I-restricted, HHV-8-specific cellular immune responses that could be important in the control of HHV-8 infection and subsequent tumor development. We show the presence of CTLs against HHV-8 latent (K12), lytic (K8.1), and highly variable (K1) proteins in infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号