首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Incisional wounds of the same length and depth were made in the skin of catfish Heteropneustes fossilis , and the response in terms of levels of glycogen in cells during healing was studied histochemically. After injury, glycogen disappeared completely from the cells in the migrating epidermis. This disappearance is correlated with the migration of the epidermal cells toward the wound gap for epithelialization and the increased production of mucous cells at the initial stages of healing. The gradual accumulation of glycogen in the epithelial cells and the basal cells after epithelialization of the wound during the early stages of healing suggests that in these cells gluconeogenesis predominates. The gradual disappearance of glycogen from the epithelial cells 72 h after injury and from the basal cells 36 h after injury indicates the gradual resumption of their metabolic activities. The increased gradients of glycogen in club cells that are undergoing vacuolization and disintegration are discussed. No significant levels of glycogen were observed during the formation of granulation tissue and biosynthesis of the sub-cutis. The depletion of glycogen in the degenerating muscle bundles is correlated with the synthesis of lactic acid which contributes to local acidity and favours the autolysis of muscles.  相似文献   

3.
4.
Chronic or non-healing skin wounds present an ongoing challenge in advanced wound care, particularly as the number of patients increases while technology aimed at stimulating wound healing in these cases remains inefficient. Mesenchymal stem cells (MSCs) have proved to be an attractive cell type for various cell therapies due to their ability to differentiate into various cell lineages, multiple donor tissue types, and relative resilience in ex-vivo expansion, as well as immunomodulatory effects during transplants. More recently, these cells have been targeted for use in strategies to improve chronic wound healing in patients with diabetic ulcers or other stasis wounds. Here, we outline several mechanisms by which MSCs can improve healing outcomes in these cases, including reducing tissue inflammation, inducing angiogenesis in the wound bed, and reducing scarring following the repair process. Approaches to extend MSC life span in implant sites are also examined.  相似文献   

5.
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.  相似文献   

6.
The treatment of wounds remains a clinical challenge because of poor angiogenesis under the wound bed, and increasingly, the patients' need for functional and aesthetically pleasing scars. For the wound healing process, new blood vessels which can deliver nutrients and oxygen to the wound area are necessary. In this study, we investigated the pro-angiogenesis ability and mechanism in wound healing of paeoniflorin (PF), which is a traditional Chinese medicine. In our in vitro results, the ability for proliferation, migration and in vitro angiogenesis in human umbilical vein endothelial cells was promoted by coculturing with PF (1.25–5 μM). Meanwhile, molecular docking studies revealed that PF has excellent binding abilities to phosphatidylinositol-3-kinase (PI3K) and protein kinase B (AKT), and consistent with our western blot results, that PF suppressed PI3K and AKT phosphorylation. Furthermore, to investigate the healing effect of PF in vivo, we constructed a full-thickness cutaneous wound model in rats. PF stimulated the cellular proliferation status, collagen matrix deposition and remodeling processes in vitro and new blood vessel formation at the wound bed resulting in efficient wound healing after intragastric administration of 10 mg·kg−1·day−1 in vivo. Overall, PF performed the pro-angiogenetic effect in vitro and accelerating wound healing in vivo. In summary, the capacity for angiogenesis in endothelial cells could be enhanced by PF treatment via the PI3K/AKT pathway in vitro and could accelerate the wound healing process in vivo through collagen deposition and angiogenesis in regenerated tissue. This study provides evidence that application of PF represents a novel therapeutic approach for the treatment of cutaneous wounds.  相似文献   

7.
8.
Wound healing is a complex but a fine-tuned biological process in which human skin has the ability to regenerate itself following damage. However, in particular conditions such as deep burn or diabetes the process of wound healing is compromised. Despite investigations on the potency of a wide variety of stem cells for wound healing, adipose-derived stem cells (ASCs) seem to possess the least limitations for clinical applications, and literature showed that ASCs can improve the process of wound healing very likely by promoting angiogenesis and/or vascularisation, modulating immune response, and inducing epithelialization in the wound. In the present review, advantages and disadvantages of various stem cells which can be used for promoting wound healing are discussed. In addition, potential mechanisms of action by which ASCs may accelerate wound healing are summarised. Finally, clinical studies applying ASCs for wound healing and the associated limitations are reviewed.  相似文献   

9.
While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.  相似文献   

10.
Cellular therapies have shown immense promise in the treatment of nonhealing wounds. Cell sheets are an emerging strategy in tissue engineering, and these cell sheets are promising as a delivery method of mesenchymal stem cells to the wound bed. Cell sheet technology utilizes temperature dependent polymers to allow for lifting of cultured cells and extracellular matrix without the use of digestive enzymes. While mesenchymal stem cells (MSCs) have shown success in cell sheets for myocardial repair, examination of cell sheets in the field of wound healing has been limited. We previously developed a novel cell sheet composed of human adipose-derived stem cells (ASCs). Both single and triple layer cell sheets were examined in a full-thickness murine wound model. The treatment cell sheets were compared with untreated controls and analyzed at timepoints of 7, 14, 18 and 21 d. The ASC cell sheets showed increased healing at 7, 14 and 18 d, and this effect was increased in the triple layer cell sheet group. Future development of these cell sheets will focus on increasing angiogenesis in the wound bed, utilizing multiple cell types, and examining allogeneic cell sheets. Here we review our experiment, expand upon our future directions and discuss the potential of an off-the-shelf cell sheet. In the field of wound healing, such a cell sheet is both clinically and scientifically exciting.  相似文献   

11.
Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.  相似文献   

12.
American cutaneous leishmaniasis (ACL) is a vector-transmitted infectious disease with an estimated 1.5 million new cases per year. In Brazil, ACL represents a significant public health problem, with approximately 30,000 new reported cases annually, representing an incidence of 18.5 cases per 100,000 inhabitants. Corte de Pedra is in a region endemic for ACL in the state of Bahia (BA), northeastern Brazil, with 500-1,300 patients treated annually. Over the last decade, population and family-based candidate gene studies were conducted in Corte de Pedra, founded on previous knowledge from studies on mice and humans. Notwithstanding limitations related to sample size and power, these studies contribute important genetic biomarkers that identify novel pathways of disease pathogenesis and possible new therapeutic targets. The present paper is a narrative review about ACL immunogenetics in BA, highlighting in particular the interacting roles of the wound healing gene FLI1 with interleukin-6 and genes SMAD2 and SMAD3 of the transforming growth factor beta signalling pathway. This research highlights the need for well-powered genetic and functional studies on Leishmania braziliensis infection as essential to define and validate the role of host genes in determining resistance/susceptibility regarding this disease.  相似文献   

13.
《Cytotherapy》2014,16(4):508-522
Background aimsStem cells are one of the most powerful tools in regeneration medicine. However, many limitations remain regarding the use of adult stem cells in clinical applications, including poor cell survival and low treatment efficiency. We describe an innovative three-dimensional cell mass (3DCM) culture that is based on cell adhesion (basic fibroblast growth factor–immobilized substrate) and assess the therapeutic potential of 3DCMs composed of human adipose tissue–derived stromal cells (hASCs).MethodsFor formation of a 3DCM, hASCs were cultured on a substrate with immobilized fibroblast growth factor-2. The angiogenic potential of 3DCMs was determined by immunostaining, fluorescence-activated cell sorting and protein analysis. To evaluate the vasculature ability and improved treatment efficacy of 3DCMs, the 3DCMs were intramuscularly injected into the ischemic limbs of mice.ResultsThe 3DCMs released various angiogenic factors (eg, vascular endothelial growth factor and interleukin-8) and differentiated into vascular cells within 3 days in normal medium. Blood vessel and tissue regeneration was clearly observed through visual inspection in the 3DCM-injected group. hASC injection slowed limb necrosis after treatment, but 50% of the mice ultimately had limb loss within 28 days. Most mice receiving 3DCMs had limb salvage (89%) or mild limb necrosis (11%).Conclusions3DCM culture promotes the efficient vascular differentiation of stem cells, and 3DCM transplantation results in the direct vascular regeneration of the injected cells and an improved therapeutic efficacy.  相似文献   

14.
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell–cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.  相似文献   

15.
The skin cells chiefly depend on carbohydrate metabolism for their energy requirement during cutaneous wound healing. Since the glucose metabolism is greatly hampered in diabetes and this might affect wound repair process. This prompted us to investigate the intermediate steps of energy metabolism by measuring enzyme activities in the wound tissues of normal and streptozotocin-induced diabetic rats following excision-type of cutaneous injury. The activities of key regulatory enzymes namely hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6 phosphate dehydrogenase (G6PD) have been monitored in the granulation tissues of normal and diabetic rats at different time points (2, 7, 14 and 21 days) of postwounding. Interestingly, a significant alteration in all these enzyme activities was observed in diabetic rats. The activity of PFK was increased but HK, LDH and CS showed a decreased activity in the wound tissue of diabetics as compared to normal rats. However G6PD exhibited an elevated activity only at early stage of healing in diabetic rats. Thus, the results suggest that significant alterations in the activities of energy metabolizing enzymes in the wound tissue of diabetic rats may affect the energy availability for cellular activity needed for repair process and this may perhaps be one of the factor responsible for impaired healing in these subjects. (Mol Cell Biochem 270: 71–77, 2005)  相似文献   

16.
Scar is the default tissue repair used by the body in response to most injuries–a response that occurs in wounds ranging in seriousness from minor skin cuts to complete severance of the spinal cord. By contrast, before the third trimester of pregnancy embryonic mammals tend to heal without scarring due to a variety of mechanisms and factors that are uniquely in operation during development in utero. The goal of tissue engineering is to develop safe and clinically effective biological substitutes that restore, maintain, or improve tissue function in patients. This review provides a comparative overview of wound healing during development and maturation and seeks to provide a perspective on just how much the embryo may be able teach us in the engineering of new therapies for tissue repair. Birth Defects Research (Part C) 96:258–270, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Wound healing is a highly dynamic process and innovative therapeutic approaches are currently developed to address challenges of providing optimal wound care. In this study, phosphate-based glasses in the (CuO)x·(KPO3)79.5-x·(ZnO)20·(Ag2O)0.5 system (CuKPO3ZnAg), with different CuO/ KPO3 ratios were prepared by melt-quenching technique. Constant Cu concentrations were released from the samples during immersion in Simulated Body Fluid (SBF), while Zn concentrations were slightly decreased over time. Glass surface phosphatation leading to formation of Zn crystalline salts was revealed through spectroscopic techniques. This finding was supported by SEM images that illustrated new compound formation. Subsequent cytotoxicity evaluation on HaCaT Keratinocytes using the indirect MTT cell viability assay revealed a CuO concentration-dependent cytotoxicity profile and excellent biocompatibility at low CuO concentrations, in all CuKPO3ZnAg glasses. Furthermore, the (CuO)5·(KPO3)74.5·(ZnO)20·(Ag2O)0.5 sample (5CuKPO3ZnAg), demonstrated superior antibacterial potency against S. aureus (ATCC 25923) strain compared to amoxicillin and ciprofloxacin. In vivo full-thickness wound healing evaluation showed a significantly higher regenerative effect of the 5CuKPO3ZnAg sample, in terms of angiogenesis, collagen synthesis and re-epithelialization compared to non-treated wounds. These findings advance our understanding of the therapeutic perspectives of phosphate-based glasses, showing promising potential for wound-healing applications.  相似文献   

18.
Extracellular vesicles (EVs), which include a variety of nano‐sized membrane‐encapsulated particles, are released to the extracellular microenvironment by the vast majority of cells and carry lipids, proteins, mRNA, and miRNA or non‐coding RNA. Increasing evidence suggests the great versatility and potential of EV‐based applications in humans. In this issue, van Balkom et al. explore and compare the reported proteomic signature of mesenchymal stromal cell (MSC)‐derived small EVs. In particular, their paper offers a valuable approach and point of view on MSC‐EV manufacturing and therapeutic potential. Briefly, van Balkom et al. aimed to identify a common protein signature that may be useful in ensuring the homogeneity of therapeutic MSC‐EVs. In addition to excessive variability in EV‐producing cell sources and culture conditions, the harvesting time for the EV‐containing conditioned medium, and EV isolation procedure, the authors found a specific protein signature from the publicly available MSC‐EVs proteome. In light of their findings and those from the plentiful studies published in this continuously growing area of research, potential focus areas and issues are outlined for the more rational design and optimization of MSC‐EV production and potency for therapeutics.  相似文献   

19.
Mesenchymal stem cells-conditioned media (MSCs-CM) contains several growth factors and cytokines, thus may be used as a better alternative to stem cell therapy, which needs to be elucidated. The present study was conducted to evaluate the therapeutic potential of caprine, canine, and guinea pig bone marrow-derived MSCs-CM in excision wound healing in a guinea pig model. MSCs were obtained from bone marrow, expanded ex vivo and characterized as per ISCT criteria. CM was collected assayed by western blot to ascertain the presence of important secretory biomolecules. Quantitative estimation by enzyme-linked immunosorbent assay was done for a vascular epidermal growth factor (VEGF) and interleukin-6 (IL-6) in caprine MSCs-CM and optimum time for collection of CM was decided as 72 hr. CM from all the species was lyophilized by freeze-drying method. Full-thickness (2 × 2 cm2) excision skin wounds were created in guinea pigs (six animals in each group) and respective lyophilized CM mixed with laminin gel was applied topically at weekly interval. On Day 28, histopathological examinations of healed skin were done by hemotoxylin and eosin staining. MSCs were found to secrete important growth factors and cytokines (i.e., VEGF, transforming growth factor-β1, fibroblast growth factor-2, insulin-like growth factor-1, stem cell factor, and IL-6) as demonstrated by immunohistochemistry and western blot assay. It was found that allogenic and xenogenic application of CM significantly improved quality wound healing with minimal scar formation. Thus, MSCs-CM can be used allogenically as well as xenogenically for quality wound healing.  相似文献   

20.
Over the past few decades, extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication. EVs encapsulate and convey information to surrounding cells or distant cells, where they mediate cellular biological responses. Among their multifaceted roles in the modulation of biological responses, the involvement of EVs in vascular development, growth and maturation has been widely documented and their potential therapeutic application in regenerative medicine or in the treatment of angiogenesis-related diseases is drawing increasing interest. In this review, we have summarized the details about the current knowledge on biogenesis of EVs and conventional isolation methods. Evidence supporting the use of EVs derived from mesenchymal stromal cells (MSCs) to enhance angiogenesis in the development of insufficient angiogenesis, such as chronic wounds, stroke and myocardial infarction, will also be discussed critically. Finally, the main challenges and prerequisites for their therapeutic applications will be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号