首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dendritic cells (DCs) are key connectors between the innate and adaptive immune system and have an important role in modulating other immune cells. Therefore, their therapeutic application to steer immune responses is considered in various disorders, including cancer. Due to differences in the cell source and manufacturing process, each DC medicinal product is unique. Consequently, release tests to ensure consistent quality need to be product-specific.Although general guidance concerning quality control testing of cell-based therapies is available, cell type-specific regulation is still limited. Especially guidance related to potency testing is needed, because developing an in vitro assay measuring cell properties relevant for in vivo functionality is challenging. In this review, we provide DC-specific guidance for development of in vitro potency assays for characterisation and release. We present a broad overview of in vitro potency assays suggested for DC products to determine their anti-tumor functionality. Several advantages and limitations of these assays are discussed. Also, we provide some points to consider for selection and design of a potency test. The ideal functionality assay for anti-tumor products evaluates the capacity of DCs to stimulate antigen-specific T cells. Because this approach may not be feasible for release, use of surrogate potency markers could be considered, provided that these markers are sufficiently linked to the in vivo DC biological activity and clinical response. Further elucidation of the involvement of specific DC subsets in anti-tumor responses will result in improved manufacturing processes for DC-based products and should be considered during potency assay development.  相似文献   

2.
We utilized the gene gun to transfect subcutaneous D5 melanoma and MT-901 mammary carcinoma tumors in situ with a granulocyte/macrophage-colony-stimulating factor (GM-CSF) plasmid complexed to gold particles. There was diminished tumor growth following bombardment with GM-CSF plasmid, which was apparent only during the period of administration. Transgenic GM-CSF was produced by the skin overlying the tumors and not by the tumors themselves. GM-CSF plasmid bombardment resulted in increased cell yields within tumor-draining lymph nodes (TDLN) with at least a 12-fold increase in the percentage of dendritic cells (8.9%) compared to controls (0.7%). Secondarily activated TDLN cells from animals transfected with GM-CSF demonstrated enhanced cytokine release (interferon γ, GM-CSF and interleukin-10) in response to tumor stimulator cells compared to controls, and had an increased capacity to mediate tumor regression in adoptive immunotherapy. There was a small, but detectable, non-specific immune adjuvant effect observed with gold particle bombardment alone, which was less than with GM-CSF plasmid. The adjuvant effect of GM-CSF plasmid required peri-tumoral transgene expression since gene bombardment away from the tumor was ineffective. Received: 27 April 1999 / Accepted: 27 August 1999  相似文献   

3.
4.
One of the current difficulties limiting the use of adoptive cell therapy (ACT) for cancer treatment is the lack of methods for rapidly expanding T cells. As described in the present report, we developed a centrifugal bioreactor (CBR) that may resolve this manufacturing bottleneck. The CBR operates in perfusion by balancing centrifugal forces with a continuous feed of fresh medium, preventing cells from leaving the expansion culture chamber while maintaining nutrients for growth. A bovine CD8 cytotoxic T lymphocyte (CTL) cell line specific for an autologous target cell infected with a protozoan parasite, Theileria parva, was used to determine the efficacy of the CBR for ACT purposes. Batch culture experiments were conducted to predict how CTLs respond to environmental changes associated with consumption of nutrients and production of toxic metabolites, such as ammonium and lactate. Data from these studies were used to develop a kinetic growth model, allowing us to predict CTL growth in the CBR and determine the optimal operating parameters. The model predicts the maximum cell density the CBR can sustain is 5.5 × 107 cells/mL in a single 11-mL conical chamber with oxygen being the limiting factor. Experimental results expanding CTLs in the CBR are in 95% agreement with the kinetic model. The prototype CBR described in this report can be used to develop a CBR for use in cancer immunotherapy.  相似文献   

5.

Background aim

Translation of therapeutic cell therapies to clinical-scale products is critical to realizing widespread success. Currently, however, there are limited tools that are accessible at the research level and readily scalable to clinical-scale needs.

Methods

We herein developed and assessed a closed loop bioreactor system in which (i) a highly gas-permeable silicone material was used to fabricate cell culture bags and (ii) dynamic flow was introduced to allow for dissociation of activated T-cell aggregates.

Results

Using this system, we find superior T-cell proliferation compared with conventional bag materials and flasks, especially at later time points. Furthermore, intermittent dynamic flow could easily break apart T-cell clusters.

Conclusions

Our novel closed loop bioreactor system is amenable to enhanced T-cell proliferation and has broader implications for being easily scaled for use in larger need settings.  相似文献   

6.
The process of replicative senescence, which stringently limits the proliferative potential of normal T cells, constitutes a potential problem for cancer immunotherapy. The ability of CD8 T cells to recognize and destroy tumor cells has been well-established, but the requirement for massive, prolonged proliferative T-cell expansion and maintenance of functional integrity poses a significant obstacle to the success of cancer immunotherapy. Cancer immune surveillance may also be compromised by the long-term exposure of T cells to tumor antigens, particularly those of latent viruses, which could drive certain T cells to replicative senescence. This review summarizes the major characteristics of T-cell replicative senescence and raises the possibility that this process has the potential to affect both cancer development and treatment. Experimental strategies aimed at preventing T-cell replicative senescence are discussed in the context of cancer immunotherapy and vaccines.This article forms part of the Symposium in Writing Tumor escape from the immune response, published in Vol. 53.  相似文献   

7.
During pregnancy, humoural immunity is essential for protection against many extracellular pathogens; however, autoimmune diseases may be induced or aggravated. T follicular helper (Tfh) cells contribute to humoural immunity. The aim of this study was to test whether Tfh cell function can be manipulated via hormones. Seventy-four women who underwent in vitro fertilization were recruited and divided into four groups: menstrual period (MP), controlled ovarian hyperstimulation (COH), embryo transfer (ET) and pregnant after embryo transfer (P). A flow cytometry analysis was performed to identify Tfh cells in peripheral blood mononuclear cells (PBMCs). Bioinformatics analysis revealed a possible pathway between Tfh and B cells. Enzyme-linked immunosorbent assays were used to detect interleukin (IL)-21 and IL-6. The quantitative polymerase chain reaction was performed to quantify BCL-6, BACH2, XBP-1, IRF-4 and G protein-coupled (GP)ER-1 mRNA expression. Compared with the MP group, the COH, ET and P groups showed more Tfh and B cells, as well as higher IL-21, IL-6, BCL-6 and BACH2 expression. Furthermore, Tfh cell frequency in PBMCs, as well as serum IL-21 and IL-6 levels, were all positively correlated with serum estradiol (E2) levels; the B cell percentage also correlated positively with Tfh cells in PBMCs. Combined with the bioinformatics analysis, XBP-1, IRF-4 and GPER-1 expression was related to E2 levels, both in vivo and in vitro. We speculate that E2 augments Tfh cells and favours humoural immunity. This study indicates that Tfh cell regulation may be a novel target in maintaining the maternal-foetal immune balance.  相似文献   

8.

Background

Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection.

Methods

We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice.

Results

HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core–positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups.

Conclusions

HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV.  相似文献   

9.
Recently in vitro assays of mutagenesis have been criticized as being poorly predictive of long-term in vivo rodent assays of carcinogenicity. Questions have also been raised concerning the relevance of rodent assays to human risk. In vitro assays using mammalian cells can detect most types of genetic lesions thought to be important in human malignant disease. Molecular and cytogenetic analyses of mutations induced by a variety of genotoxic compounds at the heterozygous thymidine kinase locus in mouse lymphoma cells indicate that this in vitro assay does indeed register the range of genetic lesions recently found in a wide variety of human tumors. The types and complexity of the induced lesions are reflected in mutant colony phenotype in a compound-specific fashion. These studies point to the use of appropriate in vitro mammalian mutagenesis assays as new model systems for dissecting the genetic lesions important in human carcinogenesis, and as a means of determining the potential for compounds to induce such lesions.  相似文献   

10.
In vitro, resveratrol inhibited growth of 4T1 breast cancer cells in a dose- and time-dependent manner. In vivo, however, resveratrol had no effect on time to tumor take, tumor growth, or metastasis when administered intraperitoneally daily (1, 3, or 5 mg/kg) for 23 days starting at the time of tumor inoculation. Resveratrol had no effect on body weight, organ histology, or estrous cycling of the tumor-bearing mice. Resveratrol, therefore, is a potent inhibitor of 4T1 breast cancer cells in vitro; is nontoxic to mice at 1-5 mg/kg; and has no growth-inhibitory effect on 4T1 breast cancer in vivo.  相似文献   

11.
Objective Naturally occurring regulatory T (TR) cells suppress autoreactive T cells whereas adaptive TR cells, induced in the periphery, play an important role in chronic viral diseases and cancer. Several studies indicate that cyclooxygenase (COX) inhibitors prevent cancer development of colon adenomas and delay disease progression in patients with colorectal cancer (CRC). We have shown that adaptive TR cells express COX-2 and produce PGE2 that suppress effector T cells in a manner that is reversed by COX-inhibitors. Methods and results Here we demonstrate that CRC patients have elevated levels of PGE2 in peripheral blood, and CRC tissue samples and draining lymph nodes display increased numbers of FOXP3+ TR cells. Depletion of TR cells from PBMC enhanced anti-tumor T-cell responses to peptides from carcinoembryonic antigen. Furthermore, the COX inhibitor indomethacin and the PKA type I antagonist Rp-8-Br-cAMPS significantly improved the anti-tumor immune activity. Conclusion We suggest that adaptive TR cells contribute to an immunosuppressive microenvironment in CRC and inhibit effector T cells by a COX-2–PGE2-dependent mechanism and thereby facilitate tumor growth. Therapeutic strategies targeting TR cells and the PGE2–cAMP pathway may be interesting to pursue to enhance anti-tumor immune activity in CRC patients.  相似文献   

12.
Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin–biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.  相似文献   

13.
Summary Several different classes of chemical carcinogens induced the transformation of human fibroblasts grown in vitro. Characteristics of the events that occur from time of treatment through the expression of neoplastic transformation are presented. The S-phase appeared to be the portion of the cell cycle most vulnerable to insult. Staging of the cells by blocking them in G1 before releasing them to proceed through scheduled DNA synthesis (S) was required to induce reproducible transformation. Compounds such as insulin were added to the cells upon release from the block to sensitize the cells to the carcinogen that was added during S. Growth of the transformed cells as distinct from nontransformed cells was promoted by growth in medium supplemented with 8X nonessential amino acids. Carcinogen-treated cells in the early stage of transformation exhibited abnormal colony morphology and were able to grow at 41°C, in air atmosphere, and in medium supplemented with only 1% serum. In addition, the transformed cells were insensitive to KB cell lysate and exhibited density independent, as well as anchorage independent, growth (i.e., growth in 0.33% agar). Cells that grew in soft agar also produced undifferentiated mesenchymal tumors in preirradiated nude mice. This work was supported in part by National Cancer Institute Grant ROI-CA-25907 and Air Force Office of Scientific Research Grant F49620-77-C0110 and EPA-R806638. The hydrazine compounds were furnished by Ms. Marilyn George and Dr. Kenneth Back, AFSOR Toxicology Division, Wright Patterson Air Force Base, Dayton, OH. The hydroxylate and phenyl napthylamines were furnished by Dr. Fred Kadlubar, Division of Chemical Carcinogenesis at the National Center for Toxicological Research, Jefferson, AR.  相似文献   

14.
On the role of APC-activation for in vitro versus in vivo T cell priming   总被引:2,自引:0,他引:2  
Professional antigen-presenting cells take up antigens for processing and presentation in association with MHC class I and II molecules. When APCs receive the right stimuli, they undergo a maturation process and migrate to secondary lymphoid organs to trigger T cell activation. In this study, we compared side-by-side in vivo and in vitro activation of T cells. Transgenic CD8(+) T cells specific for the p33 epitope, derived from the lymphocytic choriomeningitis virus glycoprotein, were labeled with CFSE and injected into syngeneic mice or alternatively, co-cultured in vitro with APCs. The p33 epitope was delivered as free peptide or genetically fused to virus-like particles. Whereas proliferation of specific T cells was comparable in both systems, the production of IFN-gamma and the expression of CD25 showed important differences. Induction of effector function and expression of activation markers were strongly enhanced in vitro by both the free peptide and VLPs. Surprisingly, addition of CpG-containing immune-stimulating DNA for activation of APCs dramatically increased effector T cell differentiation in vitro, whereas no enhancement could be observed in vitro. Thus, activation of professional APCs was mandatory for induction of effector CD8(+) T cell responses in vivo, while this step was largely dispensable in vitro.  相似文献   

15.
Co-signal receptors provide crucial activating or attenuating signals for T cells. The B and T lymphocyte attenuator (BTLA/CD272) is a third member of co-inhibitory receptors, which belongs to the CD28 immunoglobulin-superfamily. Using monoclonal antibodies (mAbs) against human BTLA, we show that BTLA is constitutively expressed on most CD4+ and CD8+ T cells and its expression progressively decreases upon T cell activation. Polarized Th1 and Th2 cells contained both BTLA-positive and BTLA-negative populations, but the extended culture diminished BTLA expression. Cross-linking BTLA with an agonistic mAb inhibited T cell proliferation and the production of the cytokines IFN-gamma and IL-10 in response to anti-CD3 stimulation. BTLA-mediated inhibition of T cell activation occurred during both primary CD4+ T cell responses and secondary CD4+ and CD8+ T cell responses, suggesting that BTLA ligation sends a constitutive "off" signal to T cells and thus might play an important role in the maintenance of T cell tolerance.  相似文献   

16.
In adherence studies, the removal of nonadherent microorganisms is essential for the valid enumeration of microorganisms that adhere to host cells. Although filtration devices are available commercially for the removal of nonadherent microorganisms, these are expensive and not reusable. In this article, we describe a simple, inexpensive, and reusable filtration device composed of two chambers of nylon, a nylon membrane of desired pore size, a rubber washer, and supporting stainless steel mesh. The device was effective in in vitro adherence assays for removing nonadherent endospores of Rhinosporidium seeberi from human buccal epithelial cells, providing valid counts of adherent microorganisms.  相似文献   

17.
Epicubenol and 19-hydroxyferruginol (Ferruginol) are sesquiterpenes isolated from the black heartwood of Cryptomeria japonica. Dendritic cells (DC) are specialized antigen-presenting cells that monitor the antigenic environment and activate na?ve T cells. The role of DC is not only to sense danger but also to tolerize the immune system to antigens encountered in the absence of maturation/inflammatory stimuli. In this study, we attempted to investigate the effects of Epicubenol and Ferruginol on the phenotypic and functional maturation of human monocytes-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days under standard conditions, followed by another 2 days with Epicubenol or Ferruginol. The expression levels of CD1a, CD83, and HLA-DR as expressed by mean fluorescence intensity (MFI) on Epicubenol-primed DC or Ferruginol-primed DC were enhanced. Allogeneic Epicubenol-primed DC or Ferruginol-primed DC co-cultured with na?ve T cells at 1:5 ratio, secreted IL-10 and TGF-beta, but little IL-4. Moreover, T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and na?ve T cells at 1:5 ratio suppressed the proliferation of autologous T cells at Treg cells: Ttarget cells and this suppression of proliferation was inhibited by anti-IL-10 mAb. The expression of FoxP3 mRNA on T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and na?ve T cells was lower. From these results, Epicubenol and Ferruginol may induce IL-10-producing Treg 1 cells from na?ve T cells by modulating DC function. It seems that Epicubenol and Ferruginol appear to be a target for tolerance after transplantation and in autoimmune diseases.  相似文献   

18.
19.
Programmed death receptor ligand 1 (PD-L1, also called B7-H1) is a recently described B7 family member. In contrast to B7-1 and B7-2, PD-L1 does not interact with either CD28 or CTLA-4. To date, one specific receptor has been identified that can be ligated by PD-L1. This receptor, programmed death receptor 1 (PD-1), has been shown to negatively regulate T-cell receptor (TCR) signaling. Upon ligating its receptor, PD-L1 has been reported to decrease TCR-mediated proliferation and cytokine production. PD-1 gene–deficient mice developed autoimmune diseases, which early led to the hypothesis of PD-L1 regulating peripheral tolerance. In contrast to normal tissues, which show minimal surface expression of PD-L1 protein, PD-L1 expression was found to be abundant on many murine and human cancers and could be further up-regulated upon IFN- stimulation. Thus, PD-L1 might play an important role in tumor immune evasion. This review discusses the currently available data concerning negative T-cell regulation via PD-1, the blockade of PD-L1/PD-1 interactions, and the implications for adoptive T-cell therapies.  相似文献   

20.
It has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13-16 years old), young adults (18-35 years old), and adults (36-49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号