首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background aims

We have previously reported the generation of a current Good Manufacture Practice (cGMP)-compliant induced pluripotent stem cell (iPSC) line for clinical applications. Here we show that multiple cellular products currently being considered for therapy can be generated from a single master cell bank of this or any other clinically compliant iPSC line

Methods

Using a stock at passage 20 prepared from the cGMP-compliant working cell bank (WCB), we tested differentiation into therapeutically relevant cell types of the three germ layers using standardized but generic protocols. Cells that we generated include (i) neural stem cells, dopaminergic neurons and astrocytes; (ii) retinal cells (retinal pigment epithelium and photoreceptors); and (iii) hepatocyte, endothelial and mesenchymal cells. To confirm that these generic protocols can also be used for other iPSC lines, we tested the reproducibility of our methodology with a second clinically compliant line

Results

Our results confirmed that well-characterized iPSC lines have broad potency, and, despite allelic variability, the same protocols could be used with minimal modifications with multiple qualified lines. In addition, we introduced a constitutively expressed GFP cassette in Chr13 safe harbor site using a standardized previously described method and observed no significant difference in growth and differentiation between the engineered line and the control line indicating that engineered products can be made using a standardized methodology

Conclusions

We believe that our demonstration that multiple products can be made from the same WCB and that the same protocols can be used with multiple lines offers a path to a cost-effective strategy for developing cellular products from iPSC lines.  相似文献   

2.

Background aims

TNFR family member glucocorticoid-induced tumor necrosis factor–related receptor (GITR/TNFRSF18) activation by its ligand glucocorticoid-induced TNF-related receptor ligand (GITRL) have important roles in proliferation, death and differentiation of cells. Some types of small cell lung cancers (SCLCs) express GITR. Because mesenchymal stromal cells (MSCs) may target tumor cells, we aimed to investigate the effect of MSCs carrying GITRL overexpressing plasmid on the proliferation and viability of a GITR+ SCLC cell line (SCLC-21H) compared with a GITR SCLC cell line (NCI-H82).

Methods

Electroporation was used to transfer pGITRL (GITRL gene carrying plasmid) or pCR3 (mock plasmid) into MSCs. Flow cytometry and semi-quantitative polymerase chain reaction were used to characterize the transfected MSCs. Following SCLC-21H or NCI-H82 cell lines were co-cultured with pGITRL-MSCs.

Results

Proliferation of NCI-H82 was increased in all types of co-cultures while SCLC-21H cells did not. GITRL expressing MSCs were able to induce cell death of SCLC-21H through the upregulation of SIVA1 apoptosis inducing factor.

Conclusions

The influence of MSCs on SCLC cells can vary according to the cancer cell subtypes as obtained in SCLC-21H and NCI-H82 and enabling GITR-GITRL interaction can induce cell death of SCLC cell lines.  相似文献   

3.

Background aims

Umbilical cord blood (UCB) provides an alternative source for hematopoietic stem/progenitor cells (HSPCs) in the treatment of hematological malignancies. However, clinical usage is limited due to the low quantity of HSPCs in each unit of cord blood and defects in bone marrow homing. Hyperbaric oxygen (HBO) is among the more recently explored methods used to improve UCB homing and engraftment. HBO works by lowering the host erythropoietin before UCB infusion to facilitate UCB HSPC homing, because such UCB cells are not directly exposed to HBO. In this study, we examined how direct treatment of UCB-CD34+ cells with HBO influences their differentiation, proliferation and in vitro transmigration.

Methods

Using a locally designed HBO chamber, freshly enriched UCB-CD34+ cells were exposed to 100% oxygen at 2.5 atmospheres absolute pressure for 2?h before evaluation of proliferative capacity, migration toward a stromal cell–derived factor 1 gradient and lineage differentiation.

Results

Our results showed that HBO treatment diminishes proliferation and in vitro transmigration of UCB-CD34+ cells. Treatment was also shown to limit the ultimate differentiation of these cells toward an erythrocyte lineage. As a potential mechanism for these findings, we also investigated HBO effects on the relative concentration of cytoplasmic and nucleic reactive oxygen species (ROS) and on erythropoietin receptor (Epo-R) and CXCR4 expression. HBO-treated cells showed a relative increase in nucleic ROS but no detectable differences in the level of Epo-R nor CXCR4 expression were established compared with non-treated cells.

Discussion

In summary, HBO amplifies the formation of ROS in DNA of UCB-CD34+ cells, potentially explaining their reduced proliferation, migration and erythrocytic differentiation.  相似文献   

4.

Background aims

In vitro engineered adipose tissue is in great demand to treat lost or damaged soft tissue or to screen for new drugs, among other applications. However, today most attempts depend on the use of animal-derived sera. To pave the way for the application of adipose tissue–engineered products in clinical trials or as reliable and robust in vitro test systems, sera should be completely excluded from the production process. In this study, we aimed to develop an in vitro adipose tissue model in the absence of sera and maintain its function long-term.

Methods

Human adipose tissue–derived stem cells were expanded and characterized in a xeno- and serum-free environment. Adipogenic differentiation was induced using a completely defined medium. Developed adipocytes were maintained in a completely defined maturation medium for additional 28 days. In addition to cell viability and adherence, adipocyte-specific markers such as perilipin A expression or leptin release were evaluated.

Results

The defined differentiation medium enhanced cell adherence and lipid accumulation at a significant level compared with the corresponding negative control. The defined maturation medium also significantly supported cell adherence and functional adipocyte maturation during the long-term culture period.

Conclusions

The process described here enables functional adipocyte generation and maintenance without the addition of unknown or animal-derived constituents, achieving an important milestone in the introduction of adipose tissue–engineered products into clinical trials or in vitro screening.  相似文献   

5.

Aim

Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs.

Methods

Clinical-grade bone marrow–derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed.

Results

MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ–licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation.

Conclusion

A flow cytometry–based assay of MSCs post–IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process.  相似文献   

6.

Background

Interleukin-35 (IL-35) has recently been identified as an immunosuppressive cytokine that has been used as a potential therapy for chronic inflammatory and autoimmune diseases. However, there remains a paucity of data regarding its potential benefits after integration into mesenchymal stem cells (MSCs).

Methods

We used a dextran sulfate sodium (DSS)–induced colitis mice model and treated them with IL-35-MSCs, MSCs or saline. The body weight was recorded daily and inflammatory processes were determined. Cytokine secretion by lamina propria lymphocytes (LPLs) and percentage of regulatory T cells (Tregs) were also measured.

Results

The data showed that mice in the two treated groups recovered their body weight more rapidly than mice treated with saline in the later stage of colitis. The colon lengths of IL-35-MSC–treated mice were markedly longer than those in the other two groups and the inflammation reduced significantly. Furthermore, the percentage of Foxp3?+?Tregs increased significantly and the level of proinflammatory cytokines produced by LPLs decreased significantly in the IL-35-MSC–treated group.

Discussion

The results demonstrate that IL-35-MSCs could ameliorate ulcerative colitis by down-regulating the expression of pro-inflammatory cytokines.  相似文献   

7.
8.

Background aims

Human induced pluripotent stem cells (hiPSCs) are becoming increasingly popular in research endeavors due to their potential for clinical application; however, such application is challenging due to limitations such as inferior function and low induction efficiency. In this study, we aimed to establish a three-dimensional (3D) culture condition to mimic the environment in which hepatogenesis occurs in vivo to enhance the differentiation of hiPSCs for large-scale culture and high throughput BAL application.

Methods

We used hydrogel to create hepatocyte-like cell (HLC) spheroids in a 3D culture condition and analyzed the cell-behavior and differentiation properties of hiPSCs in a synthetic nanofiber scaffold.

Results

We found that treating cells with Y-27632 promoted the formation of spheroids, and the cells aggregated more rapidly in a 3D culture condition. The ALB secretion, urea production and glycogen synthesis by HLCs in 3D were significantly higher than those grown in a 2-dimensional culture condition. In addition, the metabolic activities of the CYP450 enzymes were also higher in cells differentiated in the 3D culture condition.

Conclusions

3D hydrogel culture condition can promote differentiation of hiPSCs into hepatocytes. The 3D culture approach could be applied to the differentiation of hiPSCs into hepatocytes for bioartificial liver.  相似文献   

9.

Background

Adenovirus (ADV) reactivation can cause significant morbidity and mortality in children after allogeneic stem cell transplantation. Antiviral drugs can control viremia, but viral clearance requires recovery of cell-mediated immunity.

Method

This study was an open-label phase 1/2 study to investigate the feasibility of generating donor-derived ADV-specific T cells (Cytovir ADV, Cell Medica) and to assess the safety of pre-emptive administration of ADV-specific T cells in high-risk pediatric patients after allogeneic hematopoietic stem cell transplantation (HSCT) to treat adenoviremia. Primary safety endpoints included graft-versus-host disease (GvHD), and secondary endpoints determined antiviral responses and use of antiviral drugs.

Results

Between January 2013 and May 2016, 92 donors were enrolled for the production of ADV T cells at three centers in the United Kingdom (UK), and 83 products were generated from 72 mobilized peripheral blood harvests and 20 steady-state whole blood donations. Eight children received Cytovir ADV T cells after standard therapy and all resolved ADV viremia between 15 and 127 days later. ADV-specific T cells were detectable using enzyme-linked immunospot assay (ELISpot) in the peripheral blood of all patients analyzed. Serious adverse events included Grade II GvHD, Astrovirus encephalitis and pancreatitis.

Conclusion

The study demonstrates the safety and feasibility of pre-emptively manufacturing peptide pulsed ADV-specific cells for high-risk pediatric patients after transplantation and provides early evidence of clinical efficacy.  相似文献   

10.

Background

Mesenchymal stromal cells (MSCs) are studied for their immunotherapeutic potential. Prior to therapeutic use, MSCs are culture expanded to obtain the required cell numbers and, to improve their efficacy, MSCs may be primed in vitro. Culture expansion and priming induce phenotypical and functional changes in MSCs and thus standardisation and quality control measurements come in need. We investigated the impact of priming and culturing on MSC DNA methylation and examined the use of epigenetic profiling as a quality control tool.

Methods

Human umbilical cord–derived MSCs (ucMSCs) were cultured for 3 days with interferon (IFN)γ, transforming growth factor (TGF)β or a multi-factor combination (MC; IFNγ, TGFβ and retinoic acid). In addition, ucMSCs were culture expanded for 14 days. Phenotypical changes and T-cell proliferation inhibition capacity were examined. Genome-wide DNA methylation was measured with Infinium MethylationEPIC Beadchip.

Results

Upon priming, ucMSCs exhibited a different immunophenotype and ucMSC(IFNγ) and ucMSC(MC) had an increased capacity to inhibit T-cell proliferation. DNA methylation patterns were minimally affected by priming, with only one significantly differentially methylated site (DMS) in IFNγ- and MC-primed ucMSCs associated with autophagy activity. In contrast, 14 days after culture expansion, ucMSCs displayed minor phenotypical and functional changes but showed >4000 significantly DMSs, mostly concerning genes involved in membrane composition, cell adhesion and transmembrane signalling.

Discussion

These data show that DNA methylation of MSCs is only marginally affected by priming, whereas culture expansion and subsequent increased cellular interactions have a large impact on methylation. On account of this study, we suggest that DNA methylation analysis is a useful quality control tool for culture expanded therapeutic MSCs.  相似文献   

11.

Background

Cell therapy using mesenchymal stromal cells (MSCs) offers new perspectives in the treatment of traumatic brain injury (TBI). The aim of the present study was to assess the impact of platelet-rich plasma scaffolds (PRPS) as support of MSCs in a delayed phase after severe TBI in rats.

Methods

TBI was produced by weight-drop impact to the right cerebral hemisphere. Two months after TBI, four experimental groups were established; saline, PRPS, MSCs in saline, or MSCs in PRPS was transplanted into the area of brain lesion through a small hole. All groups were evaluated in the course of the following 12 months after therapy and the animals were then humanely killed.

Results

Our results showed that a greater functional improvement was obtained after the administration of MSCs in PRPS compared with the other experimental groups.

Discussion

PRPS enhanced the benefit of cell therapy with MSCs to treat chronic brain damage in rats that suffered a severe TBI. The present findings suggest that the use of intralesional MSCs supported in PRPS may be a strategy of tissue engineering for patients with established neurological severe dysfunction after a TBI.  相似文献   

12.

Background

Bone Marrow MSCs are an appealing source for several cell-based therapies. Many bioreactors, as the Quantum Cell Expansion System, have been developed to generate a large number of MSCs under Good Manufacturing Practice conditions by using Human Platelet Lysate (HPL). Previously we isolated in the human bone marrow a novel cell population, named Mesodermal Progenitor Cells (MPCs), which we identified as precursors of MSCs. MPCs could represent an important cell source for regenerative medicine applications. As HPL gives rise to a homogeneus MSC population, limiting the harvesting of other cell types, in this study we investigated the efficacy of pooled human AB serum (ABS) to provide clinically relevant numbers of both MSCs and MPCs for regenerative medicine applications by using the Quantum System.

Methods

Bone marrow aspirates were obtained from healthy adult individuals undergoing routine total hip replacement surgery and used to generate primary cultures in the bioreactor. HPL and ABS were tested as supplements to culture medium. Morphological observations, cytofluorimetric analysis, lactate and glucose level assessment were performed.

Results

ABS gave rise to both heterogeneous MSC and MPC population. About 95% of cells cultured in HPL showed a fibroblast-like morphology and typical mesenchymal surface markers, but MPCs were scarcely represented.

Discussion

The use of ABS appeared to sustain a large scale MSC production, as well as the recovery of a subset of MPCs, and resulted a suitable alternative to HPL in the cell generation based on the Quantum System.  相似文献   

13.

Background aims

Although intra-articular injection of platelet products is increasingly used for joint regenerative approaches, there are few data on their biological effects on joint-resident multipotential stromal cells (MSCs), which are directly exposed to the effects of these therapeutic strategies. Therefore, this study investigated the effect of platelet lysate (PL) on synovial fluid–derived MSCs (SF-MSCs), which in vivo have direct access to sites of cartilage injury.

Methods

SF-MSCs were obtained during knee arthroscopic procedures (N?=?7). Colony forming unit–fibroblast (CFU-F), flow-cytometric phenotyping, carboxyfluorescein succinimidyl ester-based immunomodulation for T-cell and trilineage differentiation assays were performed using PL and compared with standard conditions.

Results

PL-enhanced SF-MSC (PL-MSC) proliferation as CFU-F colonies was 1.4-fold larger, and growing cultures had shorter population-doubling times. PL-MSCs and fetal calf serum (FCS)-MSCs had the same immunophenotype and similar immunomodulation activities. In chondrogenic and osteogenic differentiation assays, PL-MSCs produced 10% more sulfated-glycosaminoglycan (sGAG) and 45% less Ca++ compared with FCS-MSCs, respectively. Replacing chondrogenic medium transforming growth factor-β3 with 20% or 50% PL further increased sGAG production of PL-MSCs by 69% and 95%, respectively, compared with complete chondrogenic medium. Also, Dulbecco's Modified Eagle's Medium high glucose (HG-DMEM) plus 50% PL induced more chondrogenesis compared with HG-DMEM plus 10% FCS and was comparable to complete chondrogenic medium.

Conclusions

This is the first study to assess SF-MSC responses to PL and provides biological support to the hypothesis that PL may be capable of modulating multiple functional aspects of joint resident MSCs with direct access to injured cartilage.  相似文献   

14.

Background

Post-transplant lymphoproliferative disorder (PTLD) is a potentially fatal complication of allogeneic hematopoietic cell transplantation (HCT). Epstein-Barr virus (EBV) reactivation (detectable DNAemia) predisposes to the development of PTLD.

Methods

We retrospectively studied 306 patients monitored for EBV DNAemia after Thymoglobulin-conditioned HCT to determine the utility of the monitoring in the management of PTLD. DNAemia was monitored weekly for ≥12 weeks post-transplantation.

Results

Reactivation was detected in 82% of patients. PTLD occurred in 14% of the total patients (17% of patients with reactivation). PTLD was treated with rituximab only when and if the diagnosis was established. This allowed us to evaluate potential DNAemia thresholds for pre-emptive therapy. We suggest 100,000–500,000?IU per mL whole blood as this would result in unnecessary rituximab administration to only 4–20% of patients and near zero mortality due to PTLD. After starting rituximab (for diagnosed PTLD), sustained regression of PTLD occurred in 25/25 (100%) patients in whom DNAemia became undetectable. PTLD progressed or relapsed in 12/17 (71%) patients in whom DNAemia was persistently detectable.

Discussion

In conclusion, for pre-emptive therapy of PTLD, we suggest threshold DNAemia of 100,000–500,000?IU/mL. Persistently detectable DNAemia after PTLD treatment with rituximab appears to have 71% positive predictive value and 100% negative predictive value for PTLD progression/relapse.  相似文献   

15.

Background aims

Cell therapy with autologous mesenchymal stromal cells (MSCs) in patients with spinal cord injury (SCI) is beginning, and the search for its better clinical application is an urgent need.

Methods

We present a phase 2 clinical trial in patients with chronic SCI who received three intrathecal administrations of 100 x 106 MSCs and were followed for 10 months from the first administration. Efficacy analysis was performed on nine patients, and safety analysis was performed on 11 patients. Clinical scales, urodynamic, neurophysiological and neuroimaging studies were performed previous to treatment and at the end of the follow-up.

Results

The treatment was well-tolerated, without any adverse event related to MSC administration. Patients showed variable clinical improvement in sensitivity, motor power, spasms, spasticity, neuropathic pain, sexual function or sphincter dysfunction, regardless of the level or degree of injury, age or time elapsed from the SCI. In the course of follow-up three patients, initially classified as ASIA A, B and C, changed to ASIA B, C and D, respectively. In urodynamic studies, at the end of follow-up, 66.6% of the patients showed decrease in postmicturition residue and improvement in bladder compliance. At this time, neurophysiological studies showed that 55.5% of patients improved in somatosensory or motor-evoked potentials, and that 44.4% of patients improved in voluntary muscle contraction together with infralesional active muscle reinnervation.

Conclusions

The present guideline for cell therapy is safe and shows efficacy in patients with SCI, mainly in recovery of sphincter dysfunction, neuropathic pain and sensitivity.  相似文献   

16.

Background

Pneumonia is the fourth leading cause of death worldwide, and Streptococcus pneumoniae is the most commonly associated pathogen. Increasing evidence suggests that mesenchymal stromal cells (MSCs) have anti-inflammatory roles during innate immune responses such as sepsis. However, little is known about the effect of MSCs on pneumococcal pneumonia.

Methods

Bone marrow–derived macrophages (BMDMs) were stimulated with various ligands in the presence or absence of MSC-conditioned medium. For in vivo studies, mice intranasally-inoculated with S. pneumoniae were intravenously treated with MSCs or vehicle, and various parameters were assessed.

Results

After stimulation with toll-like receptor (TLR) 2, TLR9 or TLR4 ligands, or live S. pneumoniae, TNF-α and interleukin (IL)–6 levels were significantly decreased, whereas IL-10 was significantly increased in BMDMs cultured in MSC-conditioned medium. In mice, MSC treatment decreased the number of neutrophils in bronchoalveolar lavage fluid (BALF) after pneumococcal infection, and this was associated with a decrease in myeloperoxidase activity in the lungs. Levels of proinflammatory cytokines, including TNF-α, IL-6, GM-CSF and IFN-γ, were significantly lower in MSC-treated mice, and the bacterial load in the lung after pneumococcal infection was significantly reduced. In addition, histopathologic analysis confirmed a decrease in the number of cells recruited to the lungs; however, lung edema, protein leakage into the BALF and levels of the antibacterial protein lipocalin 2 in the BALF were comparable between the groups.

Conclusions

These results indicate that MSCs could represent a potential therapeutic application for the treatment of pneumonia caused by S. pneumoniae.  相似文献   

17.

Background aims

Parotid hypofunction causes life-disrupting effects, and there are no effective medications for xerostomia. We hypothesized that mesenchymal stem cells (MSCs) have repairing effects on parotid glands of ovariectomized (OVX) rats.

Methods

Forty-five adult female rats were divided into three equal groups: group I (Control group), group II (OVX-group) and group III (OVX rats that received MSCs at 4 and 8 weeks post-ovariectomy). At 12 weeks post-ovariectomy, histological (Masson's trichrome and periodic acid–Schiff with alcian blue stains), immunohistochemical (caspase-3 and CD44) and morphometric studies and salivary flow rate and saliva pH determination were carried out.

Results

Histologically, the OVX group displayed numerous irregular vacuolated acini, thickened septa with marked cellular infiltration and vascular congestion. Degenerated organelles and few or irregular secretory granules with a different density were observed. Caspase-3-positive cells were highly expressed. MSC-treated glands exhibited a considerable degree of preservation of glandular architecture with numerous CD44-expressing and few caspase-3–expressing cells. Significant decrease of the salivary flow rate in the OVX group was detected, which reverted to normal levels in group III.

Conclusions

MSCs ameliorated the damaging effects of ovariectomy on the parotid glands.  相似文献   

18.

Background

Menstrual blood is only recently and still poorly studied, but it is an abundant and noninvasive source of highly proliferative mesenchymal stromal cells (MSCs). However, no appropriate isolation method has been reported due to its high viscosity and high content of clots and desquamated epithelium.

Methods

We studied three different isolation approaches and their combinations: ammonium-containing lysing buffer, distilled water and gradient-density centrifugation. We tested the proliferative capacity, morphology, surface markers and pluripotency of the resulting cells.

Results

Our isolation method yields up to four million nucleated cells per milliliter of initial blood, of which about 0.2–0.3% are colony-forming cells expressing standard mesenchymal markers CD90, CD105 and CD73, but not expressing CD45, CD34, CD117, CD133 or HLA-G. The cells have high proliferative potential (doubling in 26?h) and the ability to differentiate into adipocytes and osteocytes. Early endometrial MSCs (eMSCs) express epithelial marker cytokeratin 7 (CK7). CK7 is easily induced in later passages in a prohepatic environment. We show for the first time that a satisfactory and stable yield of eMSCs is observed throughout the whole menstrual period (5 consecutive days) of a healthy woman.

Discussion

The new cost/yield adequate method allows isolation from menstrual blood a relatively homogenous pool of highly proliferative MSCs, which seem to be the best candidates for internal organ therapy due to their proepithelial background (early expression of CK7 and its easy induction in later passages) and for mass cryobanking due to their high yield and availability.  相似文献   

19.

Background

The cell and gene therapy (CGT) field is at a critical juncture. Clinical successes have underpinned the requirement for developing manufacturing capacity suited to patient-specific therapies that can satisfy the eventual demand post-launch. Decentralised or ‘redistributed’ manufacturing divides manufacturing capacity across geographic regions, promising local, responsive manufacturing, customised to the end user, and is an attractive solution to overcome challenges facing the CGT manufacturing chain.

Methods

A study was undertaken building on previous, so far unpublished, semi-structured interviews with key opinion leaders in advanced therapy research, manufacturing and clinical practice. The qualitative findings were applied to construct a cost of goods model that permitted the cost impact of regional siting to be combined with variable and fixed costs of manufacture of a mesenchymal stromal cell product.

Results

Using the United Kingdom as an exemplar, cost disparities between regions were examined. Per patient dose costs of ~£1,800 per 75,000,000 cells were observed. Financial savings from situating the facility outside of London allow 25–41 additional staff or 24–35 extra manufacturing vessels to be employed. Decentralised quality control to mitigate site-to-site variation was examined. Partial decentralisation of quality control was observed to be financially possible and an attractive option for facilitating release ‘at risk’.

Discussion

There are important challenges that obstruct the easy adoption of decentralised manufacturing that have the potential to undermine the market success of otherwise promising products. By using the United Kingdom as an exemplar, the modelled data provide a framework to inform similar regional policy considerations across other global territories.  相似文献   

20.

Background

Clinical trials using ex vivo expansion of autologous mesenchymal stromal cells (MSCs) are in progress for several neurological diseases including multiple sclerosis (MS). Given that environment alters MSC function, we examined whether in vitro expansion, increasing donor age and progressive MS affect the neuroprotective properties of the MSC secretome.

Methods

Comparative analyses of neuronal survival in the presence of MSC-conditioned medium (MSCcm) isolated from control subjects (C-MSCcm) and those with MS (MS-MSCcm) were performed following (1) trophic factor withdrawal and (2) nitric oxide–induced neurotoxicity.

Results

Reduced neuronal survival following trophic factor withdrawal was seen in association with increasing expansion of MSCs in vitro and MSC donor age. Controlling for these factors, there was an independent, negative effect of progressive MS. In nitric oxide neurotoxicity, MSCcm-mediated neuroprotection was reduced when C-MSCcm was isolated from higher-passage MSCs and was negatively associated with increasing MSC passage number and donor age. Furthermore, the neuroprotective effect of MSCcm was lost when MSCs were isolated from patients with MS.

Discussion

Our findings have significant implications for MSC-based therapy in neurodegenerative conditions, particularly for autologous MSC therapy in MS. Impaired neuroprotection mediated by the MSC secretome in progressive MS may reflect reduced reparative potential of autologous MSC-based therapy in MS and it is likely that the causes must be addressed before the full potential of MSC-based therapy is realized. Additionally, we anticipate that understanding the mechanisms responsible will contribute new insights into MS pathogenesis and may also be of wider relevance to other neurodegenerative conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号