首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background aims

Recently, clinical studies show that cell therapy with mesenchymal stromal cells (MSCs) improves the sequelae chronically established in paraplegic patients, being necessary to know which of them can obtain better benefit.

Methods

We present here a phase 2 clinical trial that includes six paraplegic patients with post-traumatic syringomyelia who received 300 million MSCs inside the syrinx and who were followed up for 6 months. Clinical scales, urodynamic, neurophysiological, magnetic resonance (MR) and studies of ano-rectal manometry were performed to assess possible improvements.

Results

In all the cases, MR at the end of the study showed a clear reduction of the syrinx, and, at this time, signs of improvement in the urodynamic studies were found. Moreover, four patients improved in ano-rectal manometry. Four patients improved in neurophysiological studies, with signs of improvement in evoked potentials in three patients. In the American Spinal Injury Association (ASIA) assessment, only two patients improved in sensitivity, but clinical improvement in neurogenic bowel dysfunction was observed in four patients and three patients described improvement in bladder dysfunction. Spasms reduced in two of the five patients who had them previous to cell therapy, and spasticity was improved in the other two patients. Three patients had neuropathic pain before treatment, and it was reduced or disappeared completely during the study. Only two adverse events ocurred, without relation to the cell therapy.

Conclusions

Cell therapy can be considered as a new alternative to the treatment of post-traumatic syringomyelia, achieving reduction of syrinx and clinical improvements in individual patients.  相似文献   

2.
《Cytotherapy》2014,16(1):56-63
Background aimsStaphylococci account for a large proportion of hospital-acquired infections, especially among patients with indwelling devices. These infections are often caused by biofilm-producing strains, which are difficult to eradicate and may eventually cause bacteremia and metastatic infections. Recent evidence suggests that mesenchymal stem cells can enhance bacterial clearance in vivo.MethodsIn this study, a rat model with carboxymethyl cellulose pouch infection was used to analyze the efficacy of bone marrow–derived mesenchymal stromal cells (BMSCs) against the methicillin-resistant Staphylococcus aureus.ResultsThe results showed that the administration of BMSCs effectively reduced the number of bacterial colonies and the expression of many cytokines and chemokines (such as interleukin [IL]-6, IL-1β, IL-10 and CCL5). Unlike the fibroblast control groups, the pouch tissues from the BMSC-treated rats showed the formation of granulations, suggesting that the healing of the wound was in progress.ConclusionsThe results indicate that the treatment of BMSCs can reduce methicillin-resistant S aureus infection in vivo, thereby reducing the inflammatory response.  相似文献   

3.
Mesenchymal stromal cells (MSCs) have been isolated from numerous sources and are potentially therapeutic against various diseases. Umbilical cord-derived MSCs (UC-MSCs) are considered superior to other tissue-derived MSCs since they have a higher proliferation rate and can be procured using less invasive surgical procedures. However, it has been recently reported that 2D culture systems, using conventional cell culture flasks, limit the mass production of MSCs for cell therapy. Therefore, the development of alternative technologies, including microcarrier-based cell culture in bioreactors, is required for the large-scale production and industrialization of MSC therapy. In this study, we aimed to optimize the culture conditions for UC-MSCs by using a good manufacturing practice (GMP)-compatible serum-free medium, developed in-house, and a small-scale (30 mL) bioreactor, which was later scaled up to 500 mL. UC-MSCs cultured in microcarrier-based bioreactors (MC-UC-MSCs) showed characteristics equivalent to those cultured statically in conventional cell culture flasks (ST-UC-MSCs), fulfilling the minimum International Society for Cellular Therapy criteria for MSCs. Additionally, we report, for the first time, the equivalent therapeutic effect of MC-UC-MSCs and ST-UC-MSCs in immunodeficient mice (graft-versus-host disease model). Lastly, we developed a semi-automated cell dispensing system, without bag-to-bag variation in the filled volume or cell concentration. In summary, our results show that the combination of our GMP-compatible serum-free and microcarrier-based culture systems is suitable for the mass production of MSCs at an industrial scale. Further improvements in this microcarrier-based cell culture system can contribute to lowering the cost of therapy and satisfying several unmet medical needs.  相似文献   

4.
Human mesenchymal stromal cells (MSCs) expanded in vitro for cell therapy approaches need to be carefully investigated for genetic stability, by employing both molecular and conventional karyotyping. Reliability of cytogenetic analysis may be hampered in some MSC samples by the difficulty of obtaining an adequate number of metaphases. In an attempt to overcome this problem, a methodology apt to evaluate the cell‐cycle structure on synchronous MSCs was optimised. Results obtained in five independent experiments by comparing cell‐cycle analysis of synchronous and asynchronous MSC populations evaluated at early and late culture passages documented that in synchronous MSCs, 30% of cells entered G2/M phase after about 27–28 h of culture, while in asynchronous MSCs only 8% of cells in G2/M phase could be observed at the same time point. Cytogenetic analysis on synchronous MSCs allowed us to obtain 20–25 valuable metaphases/slide, whereas only 0–4 metaphases/slide were detectable in asynchronous preparations. J. Cell. Biochem. 112: 1817–1821, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
《Cytotherapy》2014,16(9):1207-1219
Background aimsAcute liver failure (ALF), a life-threatening disease characterized by the sudden loss of hepatic function, can occur after an accidental or intentional acetaminophen overdose.MethodsWith the use of an ALF mouse model, we examined both the preventive and therapeutic potential of intravenously administered human umbilical cord–derived mesenchymal stromal cells (hUCMSCs). Primary hUCMSCs were purified from freshly collected full-term umbilical cords and intravenously transplanted into BALB/c mice either before and after ALF induced by acetaminophen intoxication. We found that hUCMSCs significantly improved survival rates and relative liver weight of mice in both pre-ALF and post-ALF animals. Correspondingly, serum levels of markers that reflect hepatic injury (ie, aspartate aminotransferase, alanine aminotransferase and total bilirubin) were significantly attenuated in the group receiving hUCMSC therapy.ResultsMechanistically, we found that the protective potential of intravenously administered hUCMSCs was mediated by paracrine pathways that involved antioxidants (glutathione, superoxide dismutase), the reduction of inflammatory agents (tumor necrosis factor-α, interleukin-6) and elevated serum levels of hepatocyte growth factor.ConclusionsThrough these paracrine effects, intravenously administered hUCMSCs reduced hepatic necrosis/apoptosis and enhanced liver regeneration. Thus, our data demonstrate that intravenously administered hUCMSCs may be useful in the prevention or treatment of acetaminophen-induced ALF.  相似文献   

6.
Immunomodulatory human mesenchymal stromal cells (hMSC) have been incorporated into therapeutic protocols to treat secondary inflammatory responses post-spinal cord injury (SCI) in animal models. However, limitations with direct hMSC implantation approaches may prevent effective translation for therapeutic development of hMSC infusion into post-SCI treatment protocols. To circumvent these limitations, we investigated the efficacy of alginate microencapsulation in developing an implantable vehicle for hMSC delivery. Viability and secretory function were maintained within the encapsulated hMSC population, and hMSC secreted anti-inflammatory cytokines upon induction with the pro-inflammatory factors, TNF-α and IFN-γ. Furthermore, encapsulated hMSC modulated inflammatory macrophage function both in vitro and in vivo, even in the absence of direct hMSC-macrophage cell contact and promoted the alternative M2 macrophage phenotype. In vitro, this was evident by a reduction in macrophage iNOS expression with a concomitant increase in CD206, a marker for M2 macrophages. Finally, Sprague-Dawley rat spinal cords were injured at vertebra T10 via a weight drop model (NYU model) and encapsulated hMSC were administered via lumbar puncture 24 h post-injury. Encapsulated hMSC localized primarily in the cauda equina of the spinal cord. Histological assessment of spinal cord tissue 7 days post-SCI indicated that as few as 5 × 10(4) encapsulated hMSC yielded increased numbers of CD206-expressing macrophages, consistent with our in vitro studies. The combined findings support the inclusion of immobilized hMSC in post-CNS trauma tissue protective therapy, and suggest that conversion of macrophages to the M2 subset is responsible, at least in part, for tissue protection.  相似文献   

7.
《Cytotherapy》2014,16(10):1371-1383
Background aimsThe purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo.MethodsCultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media.ResultsIsolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects.ConclusionsL-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism.  相似文献   

8.
《Cytotherapy》2014,16(7):906-914
Background aimsMyocardial infarction results in the formation of scar tissue populated by myofibroblasts, a phenotype characterized by increased contractility and matrix deposition. Mesenchymal stromal cells (MSC) delivered to the myocardium can attenuate scar growth and restore cardiac function, though the mechanism is unclear.MethodsThis study describes a simple yet robust three-dimensional (3D) in vitro co-culture model to examine the paracrine effects of implanted MSC on resident myofibroblasts in a controlled biochemical and mechanical environment. The fibrosis model consisted of fibroblasts embedded in a 3D collagen gel cultured under defined oxygen tensions and exposed to either cyclic strain or interstitial fluid flow. MSC were injected into this model, and the effect on fibroblast phenotype was evaluated 48 h after cell injection.ResultsAnalysis of gene and protein expression of the fibroblasts indicated that injection of MSC attenuated the myofibroblast transition in response to reduced oxygen and mechanical stress. Assessment of vascular endothelial growth factor and insulin-like growth factor-1 levels demonstrated that their release by fibroblasts was markedly upregulated in hypoxic conditions but attenuated by strain or fluid flow. In fibroblast-MSC co-cultures, vascular endothelial growth factor levels were increased by hypoxia but not affected by mechanical stimuli, whereas insulin-like growth factor-1 levels were generally low and not affected by experimental conditions.ConclusionsThis study demonstrates how a 3D in vitro model of the cardiac scar can be used to examine paracrine effects of MSC on the phenotype of resident fibroblasts and therefore illuminates the role of injected progenitor cells on the progression of cardiac fibrosis.  相似文献   

9.
《Cytotherapy》2014,16(1):64-73
Background aimsMesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation.MethodsMSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells.ResultsHuman L-MSC cultures were typically CD34, CD45 and HLA-DR and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation.ConclusionsL-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model.  相似文献   

10.
Abstract Identification of mesenchymal stem cells (MSCs) derived from alternative sources has provided an exciting prospect for intensive investigation. This work focused on characterizing a new source of MSCs from stromal cells from human eye conjunctiva. In this study, after conjunctiva biopsies and culture of stromal segment of this tissue, fibroblast-like (SH2+, SH3+, CD29+, CD44+, CD166+, CD13+) human stromal cells, which can be differentiated toward the osteogenic, adipogenic, chondrogenic, and neurogenic lineages, were obtained. These cells expressed Oct-4, Nanog, Rex-1 genes, and some lineage-specific markers like cardiac actin and Keratin. Taken together, the results indicate that conjunctiva stromal-derived cells are a new source of multipotent MSCs and despite originating from an adult source, they express undifferentiated stem cell markers.  相似文献   

11.
《Cytotherapy》2014,16(5):579-585
The purpose of this review is to systematize data from many studies and observations of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cell (MSC) paracrine factors and their biologic effects in models of acute organ injury.  相似文献   

12.

Background

Clinical trials using ex vivo expansion of autologous mesenchymal stromal cells (MSCs) are in progress for several neurological diseases including multiple sclerosis (MS). Given that environment alters MSC function, we examined whether in vitro expansion, increasing donor age and progressive MS affect the neuroprotective properties of the MSC secretome.

Methods

Comparative analyses of neuronal survival in the presence of MSC-conditioned medium (MSCcm) isolated from control subjects (C-MSCcm) and those with MS (MS-MSCcm) were performed following (1) trophic factor withdrawal and (2) nitric oxide–induced neurotoxicity.

Results

Reduced neuronal survival following trophic factor withdrawal was seen in association with increasing expansion of MSCs in vitro and MSC donor age. Controlling for these factors, there was an independent, negative effect of progressive MS. In nitric oxide neurotoxicity, MSCcm-mediated neuroprotection was reduced when C-MSCcm was isolated from higher-passage MSCs and was negatively associated with increasing MSC passage number and donor age. Furthermore, the neuroprotective effect of MSCcm was lost when MSCs were isolated from patients with MS.

Discussion

Our findings have significant implications for MSC-based therapy in neurodegenerative conditions, particularly for autologous MSC therapy in MS. Impaired neuroprotection mediated by the MSC secretome in progressive MS may reflect reduced reparative potential of autologous MSC-based therapy in MS and it is likely that the causes must be addressed before the full potential of MSC-based therapy is realized. Additionally, we anticipate that understanding the mechanisms responsible will contribute new insights into MS pathogenesis and may also be of wider relevance to other neurodegenerative conditions.  相似文献   

13.
The study of adhesive properties of multipotent mesenchymal stromal cells evaluated from fibroblast colony-forming units in the bone marrow of adult mice and rats in populations of cells attached and unattached to plastic substrate after 2 h to 7 days in culture demonstrated both similarities and differences. The increase in the fibroblast colony-forming units in the adhesive population peaked on day 7 of in vitro culture in both cases; however, nearly no fibroblast colony-forming units were observed in the nonadhesive population from the mouse bone marrow in this period. Conversely, the number of colonies from the rat bone marrow nonadhesive population on day 7 of culture considerably increased, and this nonadhesive population in long-term culture became the source for subsequent nonadhesive subpopulations containing fibroblast colony-forming units. After 7 days of in vitro culture, the suspension of cells isolated from the liver of 17-day-old rat fetuses also contained a fraction of unattached fibroblast colony-forming units. In the nonadhesive subpopulations from the bone marrow and fetal liver, fibroblast colony-forming units were observed up to day 48 and 30, respectively. Stromal cell precursors of nonadhesive subpopulations from the rat bone marrow featured a period of colony formation reduced to 7 days (i.e., they were formed 1.5-2 times faster compared to the primary culture). The total number of fibroblast colony-forming units from all nonadhesive subpopulations was roughly 6 and 7.4 times that of the adhesive population of the primary culture from the bone marrow and fetal liver, respectively. Considering that the mammalian bone marrow remains the preferred source of mesenchymal stromal cells, using nonadhesive subpopulations in the presented culture system can considerably increase the yield of stromal precursor cells  相似文献   

14.
15.
16.

Aim

Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs.

Methods

Clinical-grade bone marrow–derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed.

Results

MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ–licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation.

Conclusion

A flow cytometry–based assay of MSCs post–IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process.  相似文献   

17.
Background aimsStem cells provide a promising source for treatment of type 1 diabetes, but the treatment strategy and mechanism remain unclear. The aims of this study were to investigate whether co-transplantation of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) and cord blood mononuclear cells (CB-MNCs) could reverse hyperglycemia in type 1 diabetic mice and to determine the appropriate ratio for co-transplantation. The treatment mechanism was also studied.MethodsA simple and efficient isolation method was developed to generate qualified UC-MSCs. UC-MSCs and CB-MNCs were then transplanted into type 1 diabetic mice at different ratios (UC-MSCs to CB-MNCs = 1:1, 1:4, 1:10) to observe the change in blood glucose concentration. Histology, immunohistochemistry, and human Alu polymerase chain reaction assay were performed to evaluate for the presence of donor-derived cells and the repair of endogenous islets. We also induced UC-MSCs into islet-like cells under specific culture conditions to determine their differentiate potential in vitro.ResultsCo-transplantation of UC-MSCs and CB-MNCs at a ratio of 1:4 effectively reversed hyperglycemia in diabetic mice. The detection of human Alu sequence indicated that the engraftment of donor-derived cells had homed into the recipient's pancreas and kidney. Although neither human insulin nor human nuclei antigen was detected in the regenerated pancreas, UC-MSCs could differentiate into insulin-secreted cells in vitro.ConclusionsCo-transplantation of UC-MSCs and CB-MNCs at a ratio of 1:4 could efficiently reverse hyperglycemia and repair pancreatic tissue.  相似文献   

18.
The need for efficient and reliable technologies for clinical‐scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood‐derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 107 cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 108 cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra‐Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier‐based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical‐scale production system. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 568–572, 2013  相似文献   

19.
Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.  相似文献   

20.

Background

Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity.

Methods

To examine whether extracellular vesicles (EVs) released from MSCs have therapeutic activity, EVs were isolated from MSC conditioned medium by ultracentrifugation. To further characterize the trophic factor, RNA or microRNA (miRNA) within EVs was depleted by either ribonuclease (RNase) treatment or suppressing miRNA biogenesis in MSCs. The functional activity of these modified EVs was evaluated using an in vitro chondrocyte proliferation assay. Finally, bone growth was evaluated in an animal model of OI treated with EVs.

Results

We found that infusion of MSC-derived EVs stimulated chondrocyte proliferation in the growth plate, resulting in improved bone growth in a mouse model of OI. However, infusion of neither RNase-treated EVs nor miRNA-depleted EVs enhanced chondrocyte proliferation.

Conclusion

MSCs exert therapeutic effects in OI by secreting EVs containing miRNA, and EV therapy has the potential to become a novel cell-free therapy for OI that will overcome some of the current limitations in MSC therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号