首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Adenovirus (ADV) reactivation can cause significant morbidity and mortality in children after allogeneic stem cell transplantation. Antiviral drugs can control viremia, but viral clearance requires recovery of cell-mediated immunity.

Method

This study was an open-label phase 1/2 study to investigate the feasibility of generating donor-derived ADV-specific T cells (Cytovir ADV, Cell Medica) and to assess the safety of pre-emptive administration of ADV-specific T cells in high-risk pediatric patients after allogeneic hematopoietic stem cell transplantation (HSCT) to treat adenoviremia. Primary safety endpoints included graft-versus-host disease (GvHD), and secondary endpoints determined antiviral responses and use of antiviral drugs.

Results

Between January 2013 and May 2016, 92 donors were enrolled for the production of ADV T cells at three centers in the United Kingdom (UK), and 83 products were generated from 72 mobilized peripheral blood harvests and 20 steady-state whole blood donations. Eight children received Cytovir ADV T cells after standard therapy and all resolved ADV viremia between 15 and 127 days later. ADV-specific T cells were detectable using enzyme-linked immunospot assay (ELISpot) in the peripheral blood of all patients analyzed. Serious adverse events included Grade II GvHD, Astrovirus encephalitis and pancreatitis.

Conclusion

The study demonstrates the safety and feasibility of pre-emptively manufacturing peptide pulsed ADV-specific cells for high-risk pediatric patients after transplantation and provides early evidence of clinical efficacy.  相似文献   

2.

Background

There is considerable heterogeneity in processing of stem cells for hematopoietic stem cell transplantation across Europe. The Foundation for the Accreditation of Cellular Therapy (FACT)–Joint Accreditation Committee International Society for Cellular Therapy and European Society for Blood and Marrow Transplantation (EBMT) (JACIE) standards provide minimum guidelines that, however, leave room for significant variations in practices at the individual transplantation center (TC).

Methods

To better understand the extent of heterogeneity in storage conditions, quality controls (QCs), graft processing and disposal, a questionnaire was developed, reviewed by the Cellular Therapy and Immunobiology Working Party (CTIWP) and sent to all EBMT TCs.

Results

In this study, 288 TCs from 46 countries (32 European, 14 associated) responded to the survey. Long-term storage is performed mainly either in liquid nitrogen or in the vapor phase of liquid nitrogen with 10% dimethyl sulfoxide (DMSO; 58% of centers). In case of microbiological contamination, most TCs make a case-by-case decision in collaboration with the clinicians. CD34+ counts are performed routinely either before and/or after thawing. Some centers perform additional QCs. DMSO is generally not removed (83%) and the graft is thawed at the bedside (68%) in a water bath (78%). There is heterogeneity between the centers regarding duration of storage and graft disposal.

Discussion

Overall, this survey demonstrates that the majority of responding TCs uses standardized procedures (intracenter standardization). However, significant intercenter variations persist, which warrant further standardization and investigations on clinical and financial consequences. Additionally, efforts should be undertaken to provide more specific international guidelines on storage duration and graft disposal, which may also have an important impact on health care services worldwide.  相似文献   

3.

Background aims

Human induced pluripotent stem cells (hiPSCs) are becoming increasingly popular in research endeavors due to their potential for clinical application; however, such application is challenging due to limitations such as inferior function and low induction efficiency. In this study, we aimed to establish a three-dimensional (3D) culture condition to mimic the environment in which hepatogenesis occurs in vivo to enhance the differentiation of hiPSCs for large-scale culture and high throughput BAL application.

Methods

We used hydrogel to create hepatocyte-like cell (HLC) spheroids in a 3D culture condition and analyzed the cell-behavior and differentiation properties of hiPSCs in a synthetic nanofiber scaffold.

Results

We found that treating cells with Y-27632 promoted the formation of spheroids, and the cells aggregated more rapidly in a 3D culture condition. The ALB secretion, urea production and glycogen synthesis by HLCs in 3D were significantly higher than those grown in a 2-dimensional culture condition. In addition, the metabolic activities of the CYP450 enzymes were also higher in cells differentiated in the 3D culture condition.

Conclusions

3D hydrogel culture condition can promote differentiation of hiPSCs into hepatocytes. The 3D culture approach could be applied to the differentiation of hiPSCs into hepatocytes for bioartificial liver.  相似文献   

4.

Background

Interleukin-35 (IL-35) has recently been identified as an immunosuppressive cytokine that has been used as a potential therapy for chronic inflammatory and autoimmune diseases. However, there remains a paucity of data regarding its potential benefits after integration into mesenchymal stem cells (MSCs).

Methods

We used a dextran sulfate sodium (DSS)–induced colitis mice model and treated them with IL-35-MSCs, MSCs or saline. The body weight was recorded daily and inflammatory processes were determined. Cytokine secretion by lamina propria lymphocytes (LPLs) and percentage of regulatory T cells (Tregs) were also measured.

Results

The data showed that mice in the two treated groups recovered their body weight more rapidly than mice treated with saline in the later stage of colitis. The colon lengths of IL-35-MSC–treated mice were markedly longer than those in the other two groups and the inflammation reduced significantly. Furthermore, the percentage of Foxp3?+?Tregs increased significantly and the level of proinflammatory cytokines produced by LPLs decreased significantly in the IL-35-MSC–treated group.

Discussion

The results demonstrate that IL-35-MSCs could ameliorate ulcerative colitis by down-regulating the expression of pro-inflammatory cytokines.  相似文献   

5.

Background

Since the regenerative medicine sector entered the second phase of its development (RegenMed 2.0) more than a decade ago, there is increasing recognition that current technology innovation trajectories will drive the next translational phase toward the production of disruptive, high-value curative cell and gene-based regenerative medicines.

Aim

To identify the manufacturing science problems that must be addressed to permit translation of these next generation therapeutics.

Method

In this short report, a long lens look within the pluripotent stem cell therapeutic space, both embryonic and induced, is used to gain early insights on where critical technology and manufacturing challenges may emerge.

Conclusion

This report offers a future perspective on the development and innovation that will be needed within manufacturing science to add value in the production and commercialization of the next generation of advanced cell therapies and precision medicines.  相似文献   

6.

Background

We analyzed the results of routine sterility testing performed in our center over the last 10 years, in the context both hematopoietic stem cell transplantation (HSCT) and Advanced Therapeutic Medicinal Products (ATMPs).

Methods

For sterility tests 14-day cultures were performed in culture media detecting aerobic and anaerobic microorganisms.

Results

In this study, 22/1643 (1.3%) of apheretic products for autologous or allogeneic HSCT were contaminated, whereas 14/73 bone marrow (BM) harvests (17.8%) were positive. In 22 cases, the contaminated HSCs were infused to patients, but there was no evidence of any adverse impact of contamination on the hematologic engraftment or on infections. Indeed none of the five positive hemocultures detected in patients following infusion could be linked to the contaminated stem cell product. Our Cell Factory also generated 286 ATMPs in good manufacturing practice (GMP) conditions since 2007 and all final products were sterile. In three cases of mesenchymal stromal cell expansions, the starting BM harvests were contaminated, but the cell products at the end of expansion were sterile, presumably thanks to the presence of an antibiotic in the culture medium.

Discussion

The decreased rate of contamination of cell harvests observed with time suggests that routine sterility testing and communication of the results to the collecting centers may improve clinical practices. Furthermore, we recommend the use of antibiotics in the medium for ATMP expansion, to decrease the likelihood of expanding microorganisms within clean rooms. Finally we discuss the costs of sterility testing of ATMPs by GMP-approved external laboratories.  相似文献   

7.

Background aims

Acute graft-versus-host disease (aGVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation, mediated by alloreactive donor T cells. Toll-like receptors (TLRs), a family of conserved pattern-recognition receptors (PRRs), represent key players in donors' T-cell activation during aGVHD; however, a regulatory, tolerogenic role for certain TLRs has been recognized in a different context. We investigated whether the ex vivo–induced TLR-2,-4,-7 tolerance in donor cells could prevent alloreactivity in a mismatched transplantation model.

Methods

TLR-2,-4,-7 tolerance was induced in mouse splenocytes, after stimulation with low doses of corresponding ligands. Cellular and molecular changes of the TLR-tolerant splenocytes and purified T cells were assessed by immunophenotypic and gene expression analyses. Incidence of aGVHD was evaluated by the clinical score and survival as well as histopathology of target tissues.

Results

Only the R848-induced TLR7 tolerance prevented aGVHD. The TLR7 ligand–induced tolerance lasted for a critical post-transplant period and was associated with distinct cellular and molecular signatures characterized by induction of regulatory T cells, reduced alloreactivity and balanced regulation of inflammatory signaling and innate immune responses. The TLR7-tolerant T cells preserved the immunological memory and generated in vitro virus-specific T cells upon antigen stimulation. The anti-aGVHD tolerization effect was direct and specific to TLR7 and required the receptor–ligand interaction; TLR7–/– T cells isolated from B6 TLR7–/– mice presented a distinct gene expression profile but failed to prevent aGVHD.

Discussion

We propose an effective and clinically applicable ex vivo approach for aGVHD prevention through a transient and reversible immune reprogramming exerted by TLR7-tolerant donor lymphocytes.  相似文献   

8.

Background aims

We have previously reported the generation of a current Good Manufacture Practice (cGMP)-compliant induced pluripotent stem cell (iPSC) line for clinical applications. Here we show that multiple cellular products currently being considered for therapy can be generated from a single master cell bank of this or any other clinically compliant iPSC line

Methods

Using a stock at passage 20 prepared from the cGMP-compliant working cell bank (WCB), we tested differentiation into therapeutically relevant cell types of the three germ layers using standardized but generic protocols. Cells that we generated include (i) neural stem cells, dopaminergic neurons and astrocytes; (ii) retinal cells (retinal pigment epithelium and photoreceptors); and (iii) hepatocyte, endothelial and mesenchymal cells. To confirm that these generic protocols can also be used for other iPSC lines, we tested the reproducibility of our methodology with a second clinically compliant line

Results

Our results confirmed that well-characterized iPSC lines have broad potency, and, despite allelic variability, the same protocols could be used with minimal modifications with multiple qualified lines. In addition, we introduced a constitutively expressed GFP cassette in Chr13 safe harbor site using a standardized previously described method and observed no significant difference in growth and differentiation between the engineered line and the control line indicating that engineered products can be made using a standardized methodology

Conclusions

We believe that our demonstration that multiple products can be made from the same WCB and that the same protocols can be used with multiple lines offers a path to a cost-effective strategy for developing cellular products from iPSC lines.  相似文献   

9.

Background

Umbilical cord (UC) tissue can be collected in a noninvasive procedure and is enriched in progenitor cells with potential therapeutic value. Mesenchymal stromal cells (MSCs) can be reliably harvested from fresh or cryopreserved UC tissue by explant outgrowth with no apparent impact on functionality. A number of stem cell banks offer cryopreservation of UC tissue, alongside cord blood, for future cell-based applications. In this setting, measuring and monitoring UC quality is critical.

Materials and Methods

UC explants were evaluated using a plating and scoring system accounting for cell attachment and proliferation. Explant scores for fresh and cryopreserved-then-thawed tissue from the same UC were compared. Metabolic activity of composite UC tissue was also assayed after exposure of the tissue to conditions anticipated to affect UC quality and compared with explant scores within the same UC.

Results

All fresh and cryopreserved tissues yielded MSC-like cells, and cryopreservation of the tissue did not prevent the ability to isolate MSCs by the explant method. Thawed UC tissue scores were 91% (±0.6%; P?=?0.0009) that of the fresh, biologically identical tissue. Within the same UC, explant scores correlated well to both cell yield (R2?=?0.85) and tissue metabolic activity (R2?=?0.69).

Discussion

A uniform explant scoring assay can provide information about the quality of composite UC tissue. Such quantitative measurement is useful for analysis of tissue variability and process monitoring. Additionally, a metabolic assay of UC tissue health provides results that correlate well to explant scoring results.  相似文献   

10.

Background aims

Umbilical cord blood (UCB) provides an alternative source for hematopoietic stem/progenitor cells (HSPCs) in the treatment of hematological malignancies. However, clinical usage is limited due to the low quantity of HSPCs in each unit of cord blood and defects in bone marrow homing. Hyperbaric oxygen (HBO) is among the more recently explored methods used to improve UCB homing and engraftment. HBO works by lowering the host erythropoietin before UCB infusion to facilitate UCB HSPC homing, because such UCB cells are not directly exposed to HBO. In this study, we examined how direct treatment of UCB-CD34+ cells with HBO influences their differentiation, proliferation and in vitro transmigration.

Methods

Using a locally designed HBO chamber, freshly enriched UCB-CD34+ cells were exposed to 100% oxygen at 2.5 atmospheres absolute pressure for 2?h before evaluation of proliferative capacity, migration toward a stromal cell–derived factor 1 gradient and lineage differentiation.

Results

Our results showed that HBO treatment diminishes proliferation and in vitro transmigration of UCB-CD34+ cells. Treatment was also shown to limit the ultimate differentiation of these cells toward an erythrocyte lineage. As a potential mechanism for these findings, we also investigated HBO effects on the relative concentration of cytoplasmic and nucleic reactive oxygen species (ROS) and on erythropoietin receptor (Epo-R) and CXCR4 expression. HBO-treated cells showed a relative increase in nucleic ROS but no detectable differences in the level of Epo-R nor CXCR4 expression were established compared with non-treated cells.

Discussion

In summary, HBO amplifies the formation of ROS in DNA of UCB-CD34+ cells, potentially explaining their reduced proliferation, migration and erythrocytic differentiation.  相似文献   

11.

Background aims

For patients needing allogeneic stem cell transplantation but lacking a major histocompatibility complex (MHC)-matched donor, haplo-identical (family) donors may be an alternative. Stringent T-cell depletion required in these cases to avoid lethal graft-versus-host disease (GVHD) can delay immune reconstitution, thus impairing defense against virus reactivation and attenuating graft-versus-leukemia (GVL) activity. Several groups reported that GVHD is caused by cells residing within the naive (CD45RA+) T-cell compartment and proposed use of CD45RA-depleted donor lymphocyte infusion (DLI) to accelerate immune reconstitution. We developed and tested the performance of a CD45RA depletion module for the automatic cell-processing device CliniMACS Prodigy and investigated quality attributes of the generated products.

Methods

Unstimulated apheresis products from random volunteer donors were depleted of CD45RA+ cells on CliniMACS Prodigy, using Good Manufacturing Practice (GMP)-compliant reagents and methods throughout. Using phenotypic and functional in vitro assays, we assessed the cellular constitution of CD45RA-depleted products, including T-cell subset analyses, immunological memory function and allo-reactivity.

Results

Selections were technically uneventful and proceeded automatically with minimal hands-on time beyond tubing set installation. Products were near-qualitatively CD45RA+ depleted, that is, largely devoid of CD45RA+ T cells but also of almost all B and natural killer cells. Naive and effector as well as γ/δ T cells were greatly reduced. The CD4:CD8 ratio was fivefold increased. Mixed lymphocyte reaction assays of the product against third-party leukocytes revealed reduced allo-reactivity compared to starting material. Anti-pathogen responses were retained.

Discussion

The novel, closed, fully GMP-compatible process on Prodigy generates highly CD45RA-depleted cellular products predicted to be clinically meaningfully depleted of GvH reactivity.  相似文献   

12.

Background aims

Parotid hypofunction causes life-disrupting effects, and there are no effective medications for xerostomia. We hypothesized that mesenchymal stem cells (MSCs) have repairing effects on parotid glands of ovariectomized (OVX) rats.

Methods

Forty-five adult female rats were divided into three equal groups: group I (Control group), group II (OVX-group) and group III (OVX rats that received MSCs at 4 and 8 weeks post-ovariectomy). At 12 weeks post-ovariectomy, histological (Masson's trichrome and periodic acid–Schiff with alcian blue stains), immunohistochemical (caspase-3 and CD44) and morphometric studies and salivary flow rate and saliva pH determination were carried out.

Results

Histologically, the OVX group displayed numerous irregular vacuolated acini, thickened septa with marked cellular infiltration and vascular congestion. Degenerated organelles and few or irregular secretory granules with a different density were observed. Caspase-3-positive cells were highly expressed. MSC-treated glands exhibited a considerable degree of preservation of glandular architecture with numerous CD44-expressing and few caspase-3–expressing cells. Significant decrease of the salivary flow rate in the OVX group was detected, which reverted to normal levels in group III.

Conclusions

MSCs ameliorated the damaging effects of ovariectomy on the parotid glands.  相似文献   

13.

Introduction

Peripheral blood stem cells mobilized by granulocyte colony-stimulating factor (G-CSF) from healthy donors are commonly used for allogeneic stem cell transplantation. The effect of G-CSF administration on global serum metabolite profiles has not been investigated before.

Objectives

This study aims to examine the systemic metabolomic profiles prior to and following administration of G-CSF in healthy adults.

Methods

Blood samples were collected from 15 healthy stem cell donors prior to and after administration of G-CSF 10 µg/kg/day for 4 days. Using a non-targeted metabolomics approach, metabolite levels in serum were determined using ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography/mass spectrometry.

Results

Comparison of the metabolite profiles of donors before and after G-CSF treatment revealed 239 metabolites that were significantly altered. The major changes of the metabolite profiles following G-CSF administration included alteration of several fatty acids, including increased levels of several medium and long-chain fatty acids, as well as polyunsaturated fatty acids; while there were lower levels of other lipid metabolites such as phospholipids, lysolipids, sphingolipids. Furthermore, there were significantly lower levels of several amino acids and/or their metabolites, including several amino acids with known immunoregulatory functions (methionine, tryptophan, valine). Lastly, the levels of several nucleotides and nucleotide metabolites (guanosine, adenosine, inosine) were also decreased after G-CSF administration, while methylated products were increased. Some of these altered products/metabolites may potentially have angioregulatory effects whereas others may suggest altered intracellular epigenetic regulation.

Conclusion

Our results show that G-CSF treatment alters biochemical serum profiles, in particular amino acid, lipid and nucleotide metabolism. Additional studies are needed to further evaluate the relevance of these changes in healthy donors.
  相似文献   

14.

Background

The blood-brain barrier (BBB) presents a significant challenge to the therapeutic efficacy of stem cells in chronic stroke. Various methods have been developed to increase BBB permeability, but these are associated with adverse effects and are, therefore, not clinically applicable. We recently identified that combination drug treatment of mannitol and temozolomide improved BBB permeability in vitro. Here, we investigated whether this combination could increase the effectiveness of stem cell treatment in an animal model of chronic ischemic stroke.

Methods

Chronic stroke was induced in rats by middle cerebral artery occlusion (MCAo). After then, rats were administered human umbilical cord–derived mesenchymal stromal cells (hUC-MSCs) by intravenous injection with or without combination drug treatment of mannitol and temozolomide. To evaluate the therapeutic efficacy, behavioral and immunohistochemical tests were performed, and the differences among control, stem cell only, combination drug only and stem cell with combination drug treatment were analyzed.

Results

Although no hUC-MSCs were detected in any group, treatment with stem cells and combination drug of mannitol and temozolomide increased the intracerebral delivery of hCD63-positive microvesicles compared with stem cell only treatment. Furthermore, treatment with stem cells and drug combination ameliorated behavioral deficits and increased bromodeoxyuridine-, doublecortin- and Reca-1–positive cells in the perilesional area as compared with other groups.

Discussion

The combination drug treatment of mannitol and temozolomide allowed for the efficient delivery of hUC-MSC–derived microvesicles into the brain in a chronic stroke rat model. This attenuated behavioral deficits, likely by improving neural regeneration and angiogenesis. Thus, combination drug treatment of mannitol and temozolomide could be a novel therapeutic option for patients with chronic ischemic stroke.  相似文献   

15.

Background aims

Retinal progenitor cells (RPCs) are a promising cell therapy treatment for retinal degenerative diseases. However, problems with limited proliferation ability and differentiation preference toward glia rather than neurons restrict the clinical application of these RPCs. The extracellular matrix (ECM) has been recognized to provide an appropriate microenvironment to support stem cell adhesion and direct cell behaviors, such as self-renewal and differentiation.

Methods

In this study, decellularized matrix of adipose-derived mesenchymal stromal cells (DMA) was manufactured using a chemical agent method (0.5% ammonium hydroxide Triton + 20?mmol/L NH4OH) in combination with a biological agent method (DNase solution), and the resulting DMA were evaluated by scanning electron microscopy (SEM) and immunocytochemistry. The effect of DMA on RPC proliferation and differentiation was evaluated by quantitative polymerase chain reaction, Western blot and immunocytochemistry analysis.

Results

DMA was successfully fabricated, as demonstrated by SEM and immunocytochemistry. Compared with tissue culture plates, DMA may effectively enhance the proliferation of RPCs by activating Akt and Erk phosphorylation; when the two pathways were blocked, the promoting effect was reversed. Moreover, DMA promoted the differentiation of RPCs toward retinal neurons, especially rhodopsin- and recoverin-positive photoreceptors, which is the most interesting class of cells for retinal degeneration treatment.

Conclusions

These results indicate that DMA has important roles in governing RPC proliferation and differentiation and may contribute to the application of RPCs in treating retinal degenerative diseases.  相似文献   

16.

Background

Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers.

Methods

First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device.

Results

T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable.

Discussion

This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy.  相似文献   

17.

Background aims

In vitro engineered adipose tissue is in great demand to treat lost or damaged soft tissue or to screen for new drugs, among other applications. However, today most attempts depend on the use of animal-derived sera. To pave the way for the application of adipose tissue–engineered products in clinical trials or as reliable and robust in vitro test systems, sera should be completely excluded from the production process. In this study, we aimed to develop an in vitro adipose tissue model in the absence of sera and maintain its function long-term.

Methods

Human adipose tissue–derived stem cells were expanded and characterized in a xeno- and serum-free environment. Adipogenic differentiation was induced using a completely defined medium. Developed adipocytes were maintained in a completely defined maturation medium for additional 28 days. In addition to cell viability and adherence, adipocyte-specific markers such as perilipin A expression or leptin release were evaluated.

Results

The defined differentiation medium enhanced cell adherence and lipid accumulation at a significant level compared with the corresponding negative control. The defined maturation medium also significantly supported cell adherence and functional adipocyte maturation during the long-term culture period.

Conclusions

The process described here enables functional adipocyte generation and maintenance without the addition of unknown or animal-derived constituents, achieving an important milestone in the introduction of adipose tissue–engineered products into clinical trials or in vitro screening.  相似文献   

18.

Background

Kanamycin, mainly used in the treatment of drug-resistant-tuberculosis, is known to cause irreversible hearing loss. Using the xeno-transplant model, we compared both in vitro and in vivo characteristics of human mesenchymal stromal cells (MSCs) derived from adult tissues, bone marrow (BM-MSCs) and adipose tissue (ADSCs). These tissues were selected for their availability, in vitro multipotency and regenerative potential in vivo in kanamycin-deafened nod-scid mice.

Methods

MSCs were isolated from informed donors and expanded ex vivo. We evaluated their proliferation capacity in vitro using the hexosaminidase assay, the phenotypic profile using flow-cytometry of a panel of surface antigens, the osteogenic potential using alkaline phosphatase activity and the adipogenic potential using oil-red-O staining. MSCs were intravenously injected in deafened mice and cochleae, liver, spleen and kidney were sampled 7 and 30 days after transplantation. The dissected organs were analyzed using lectin histochemistry, immunohistochemistry, polymerase chain reaction (PCR) and dual color fluorescence in situ hybridization (DC-FISH).

Results

MSCs showed similar in vitro characteristics, but ADSCs appeared to be more efficient after prolonged expansion. Both cell types engrafted in the cochlea of damaged mice, inducing regeneration of the damaged sensory structures. Several hybrid cells were detected in engrafted tissues.

Discussion

BM-MSCs and ADSCs showed in vitro characteristics suitable for tissue regeneration and fused with resident cells in engrafted tissues. The data suggest that paracrine effect is the prevalent mechanism inducing tissue recovery. Overall, BM-MSCs and ADSCs appear to be valuable tools in regenerative medicine for hearing loss recovery.  相似文献   

19.

Background

Post-transplant lymphoproliferative disorder (PTLD) is a potentially fatal complication of allogeneic hematopoietic cell transplantation (HCT). Epstein-Barr virus (EBV) reactivation (detectable DNAemia) predisposes to the development of PTLD.

Methods

We retrospectively studied 306 patients monitored for EBV DNAemia after Thymoglobulin-conditioned HCT to determine the utility of the monitoring in the management of PTLD. DNAemia was monitored weekly for ≥12 weeks post-transplantation.

Results

Reactivation was detected in 82% of patients. PTLD occurred in 14% of the total patients (17% of patients with reactivation). PTLD was treated with rituximab only when and if the diagnosis was established. This allowed us to evaluate potential DNAemia thresholds for pre-emptive therapy. We suggest 100,000–500,000?IU per mL whole blood as this would result in unnecessary rituximab administration to only 4–20% of patients and near zero mortality due to PTLD. After starting rituximab (for diagnosed PTLD), sustained regression of PTLD occurred in 25/25 (100%) patients in whom DNAemia became undetectable. PTLD progressed or relapsed in 12/17 (71%) patients in whom DNAemia was persistently detectable.

Discussion

In conclusion, for pre-emptive therapy of PTLD, we suggest threshold DNAemia of 100,000–500,000?IU/mL. Persistently detectable DNAemia after PTLD treatment with rituximab appears to have 71% positive predictive value and 100% negative predictive value for PTLD progression/relapse.  相似文献   

20.

Background

This study explored the neural differentiation and therapeutic effects of stem cells from human exfoliated deciduous teeth (SHED) in a rat model of Parkinson's disease (PD).

Methods

The SHED were isolated from fresh dental pulp and were induced to differentiate to neurons and dopamine neurons by inhibiting similar mothers against dpp (SMAD) signaling with Noggin and increase conversion of dopamine neurons from SHED with CHIR99021, Sonic Hedgehog (SHH) and FGF8 in vitro. The neural-primed SHED were transplanted to the striatum of 6-hydroxydopamine (6-OHDA)–induced PD rats to evaluate their neural differentiation and functions in vivo.

Results

These SHED were efficiently differentiated to neurons (62.7%) and dopamine neurons (42.3%) through a newly developed method. After transplantation, the neural-induced SHED significantly improved recovery of the motor deficits of the PD rats. The grafted SHED were differentiated into neurons (61%), including dopamine neurons (22.3%), and integrated into the host rat brain by forming synaptic connections. Patch clamp analysis showed that neurons derived from grafted SHED have the same membrane potential profile as dopamine neurons, indicating these cells are dopamine neuron-like cells. The potential molecular mechanism of SHED transplantation in alleviating motor deficits of the rats is likely to be mediated by neuronal replacement and immune-modulation as we detected the transplanted dopamine neurons and released immune cytokines from SHED.

Conclusion

Using neural-primed SHED to treat PD showed significant restorations of motor deficits in 6-OHDA–induced rats. These observations provide further evidence that SHED can be used for cell-based therapy of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号