首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

2.
Ultramafic soils at Bandalup Hill (Western Australia) are characterised by high concentrations of Ni and low levels of P. Amongst the plant species that can sustain such hostile conditions, Hakea verrucosa F. Muell from a non-mycorrhizal family (Proteaceae) would be expected to rely on cluster roots to access P. However, the acidification of ultramafic soils by cluster roots might increase the dissolution of soil Ni, and therefore its availability to plants. Symbiosis with mycorrhizal fungi, on the other hand, might help to reduce the uptake of Ni by H. verrucosa. Therefore, the aim of this study was to investigate the mycorrhizal status of H. verrucosa, and assess any contribution from mycorrhizal fungi to its growth and nutrient status. Seedlings of H. verrucosa were first grown in undisturbed ultramafic soil cores from Bandalup Hill for 8 weeks to assess the presence of mycorrhizal fungi in their roots. In a second experiment, H. verrucosa seedlings were grown in the same ultramafic soil that was either steamed or left untreated. Seedlings were inoculated with an arbuscular mycorrhizal (AM) fungal consortium from Bandalup Hill. Fungal hyphae, vesicles, as well as intracellular arbuscules and hyphal coils were observed in the cluster roots of H. verrucosa in both experiments. In the first experiment, 57% of the root length was colonized by AM fungi. Seedlings had high (between 1.4 and 1.9) shoot to root ratios and their roots had very few root hairs, despite growing in P-deficient soil. Steaming of the ultramafic soil increased the growth of seedlings and their nutrient uptake. Inoculation with AM fungi reduced the seedling growth in steamed ultramafic soil; however, it increased their shoot P and K concentration and also the shoot K content. The shoot Ni concentration of seedlings was not affected by the presence of AM fungi.  相似文献   

3.
Phytostabilization strategies may be suitable to reduce the dispersion of uranium (U) and the overall environmental risks of U-contaminated soils. The role of Glomus intraradices, an arbuscular mycorrhizal (AM) fungus, in such phytostabilization of U was investigated with a compartmented plant cultivation system facilitating the specific measurement of U uptake by roots, AM roots and extraradical hyphae of AM fungi and the measurement of U partitioning between root and shoot. A soil-filled plastic pot constituted the main root compartment (CA) which contained a plastic vial filled with U-contaminated soil amended with 0, 50 or 200 mg KH2PO4−P kg–1soil (CB). The vial was sealed by coarse or fine nylon mesh, permitting the penetration of both roots and hyphae or of just hyphae. Medicago truncatula plants grown in CA were inoculated with G. intraradices or remained uninoculated. Dry weight of shoots and roots in CA was significantly increased by G. intraradices, but was unaffected by mesh size or by P application in CB. The P amendments decreased root colonization in CB, and increased P content and dry weight of those roots. Glomus intraradices increased root U concentration and content in CA, but decreased shoot U concentrations. Root U concentrations and contents were significantly higher when only hyphae could access U inside CB than when roots could also directly access this U pool. The proportion of plant U content partitioned to shoots was decreased by root exclusion from CB and by mycorrhizas (M) in the order: no M, roots in CB > no M, no roots in CB > M, roots in CB > M, no roots in CB. Such mycorrhiza-induced retention of U in plant roots may contribute to the phytostabilization of U contaminated environments.  相似文献   

4.
Arbuscular mycorrhizal (AM) fungi differ in their response to soil pH. Thus, change in soil pH may influence the relative abundance of mycorrhizal fungi inside roots. Root colonization by two AM fungi was studied in relation to addition of lime (CaCO3), quantity of inoculum and inoculum placement. Addition of CaCO3 to an acid soil decreased the colonization of roots by Acaulospora laevis but increased colonization by Glomus invermaium when both fungi were present. In acid soil (pH 4.7), almost all roots were colonized by A. laevis, while G. invermaium was dominant when soil pH was increased to pH 7.3. This occurred regardless of whether the inoculum was banded or mixed throughout the soil. There was no effect of CaCO3 on the relative abundance of fungi inside roots at intermediate rates of CaCO3 application (pH 5.3-6.3) when both fungi were inoculated together. In this experiment, both fungi colonized roots at all levels of CaCO3 when inoculated alone, except for A. laevis at the highest level of CaCO3. We conclude that soil pH affects the competitive ability of these two AM fungi during mycorrhiza formation primarily by affecting hyphae growth in soil and thus the relative abundance of hyphae at the root surface and subsequently inside the root.  相似文献   

5.
Mycorrhizas are ubiquitous plant–fungus mutualists in terrestrial ecosystems and play important roles in plant resource capture and nutrient cycling. Sporadic evidence suggests that anthropogenic nitrogen (N) input may impact the development and the functioning of arbuscular mycorrhizal (AM) fungi, potentially altering host plant growth and soil carbon (C) dynamics. In this study, we examined how mineral N inputs affected mycorrhizal mediation of plant N acquisition and residue decomposition in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that either prevented or allowed AM fungal hyphae but not plant roots to grow into the TEST compartments. Wild oat (Avena fatua L.) was planted in the HOST compartments that had been inoculated with either a single species of AM fungus, Glomus etunicatum, or a mixture of AM fungi including G. etunicatum. Mycorrhizal contributions to plant N acquisition and residue decomposition were directly assessed by introducing a mineral 15N tracer and 13C‐rich residues of a C4 plant to the TEST compartments. Results from 15N tracer measurements showed that AM fungal hyphae directly transported N from the TEST soil to the host plant. Compared with the control with no penetration of AM fungal hyphae, AM hyphal penetration led to a 125% increase in biomass 15N of host plants and a 20% reduction in extractable inorganic N in the TEST soil. Mineral N inputs to the HOST compartments (equivalent to 5.0 g N m?2 yr?1) increased oat biomass and total root length colonized by mycorrhizal fungi by 189% and 285%, respectively, as compared with the no‐N control. Mineral N inputs to the HOST plants also reduced extractable inorganic N and particulate residue C proportion by 58% and 12%, respectively, in the corresponding TEST soils as compared to the no‐N control, by stimulating AM fungal growth and activities. The species mixture of mycorrhizal fungi was more effective in facilitating N transport and residue decomposition than the single AM species. These findings indicate that low‐level mineral N inputs may significantly enhance nutrient cycling and plant resource capture in terrestrial ecosystems via stimulation of root growth, mycorrhizal functioning, and residue decomposition. The long‐term effects of these observed alterations on soil C dynamics remain to be investigated.  相似文献   

6.
Solaiman  M. Zakaria  Abbott  Lynette K. 《Plant and Soil》2003,248(1-2):313-320
Communities of indigenous arbusuclar mycorrhizal (AM) fungi are expected to alter phosphorus uptake and biomass productivity of plants according to characteristics of the life cycles of the fungi present and the way they interact with each other inside roots and with host plants. Differences in the relative abundance of AM fungi inside roots could influence P uptake if the fungi present differ in effectiveness at accessing P and transferring it to the plant. However, it is difficult to assess the contribution of AM fungi under field conditions. We investigated P uptake, from point sources of P placed 2, 4 and 6 cm from roots, by plants colonised by a community of AM fungi in jarrah forest soil. Roots were retained within a mesh bag to prevent them from growing towards the point source of P. The relative abundance of morphotypes of fungi inside roots and the P status of plants were assessed after 12 and 16 weeks. First, a bioassay was carried out in undisturbed forest soil cores using two host plants, a forest understorey plant Phyllanthus calycinus Labill and the annual pasture species subterranean clover (Trifolium subterraneaumL.), to assess the infectivity of the indigenous community of AM fungi. Roots of both bioassay host plants were colonised in similar proportions by morphotypes of AM fungi resembling Glomus, Acaulospora, Scutellospora and fine endophytes. In this bioassay, there were positive correlations between the proportion of root length colonised and plant biomass and P uptake for P. calycinus, but not for subterranean clover. In the experiment assessing the capacity of P. calycinus to access P placed at increasing distances from the root, shoot P content and concentration in P. calycinus were greater when P was placed 2 cm compared with 4 and 6 cm from roots. The length of hyphae in the vicinity of the point source of P decreased with increasing distance from the plant. The extent to which the individual AM fungi were involved in P uptake is not known. The Glomus morphotype was dominant at both times of sampling.  相似文献   

7.
Gazey C  Abbott LK  Robson AD 《Mycorrhiza》2004,14(6):355-362
Arbuscular mycorrhizal (AM) fungi occur in all agricultural soils but it is not easy to assess the contribution they make to plant growth under field conditions. Several approaches have been used to investigate this, including the comparison of plant growth in the presence or absence of naturally occurring AM fungi following soil fumigation or application of fungicides. However, treatments such as these may change soil characteristics other than factors directly involving AM fungi and lead to difficulties in identifying the reason for changes in plant growth. In a glasshouse experiment, we assessed the contribution of indigenous AM fungi to growth of subterranean clover in undisturbed cores of soil from two agricultural field sites (a cropped agricultural field at South Carrabin and a low input pasture at Westdale). We used the approach of estimating the benefit of AM fungi by comparing the curvature coefficients ( C) of the Mitscherlich equation for subterranean clover grown in untreated field soil, in field soil into which inoculum of Glomus invermaium was added and in soil fumigated with methyl bromide. It was only possible to estimate the benefit of mycorrhizas using this approach for one soil (Westdale) because it was the only soil for which a Mitscherlich response to the application of a range of P levels was obtained. The mycorrhizal benefit ( C of mycorrhizal vs. non-mycorrhizal plants or C of inoculated vs. uninoculated plants) of the indigenous fungi corresponded with a requirement for phosphate by plants that were colonised by AM fungi already present in the soil equivalent to half that required by non-mycorrhizal plants. This benefit was independent of the plant-available P in the soil. There was no additional benefit of inoculation on plant growth other than that due to increased P uptake. Indigenous AM fungi were present in both soils and colonised a high proportion of roots in both soils. There was a higher diversity of morphotypes of mycorrhizal fungi in roots of plants grown in the Westdale soil than in the South Carrabin soil that had a history of high phosphate fertilizer use in the field. Inoculation with G. invermaium did not increase the level of colonisation of roots by mycorrhizal fungi in either soil, but it replaced approximately 20% of the root length colonised by the indigenous fungi in Westdale soil at all levels of applied P. The proportion of colonised root length replaced by G. invermaium in South Carrabin soil varied with the level of application of P to the soil; it was higher at intermediate levels of recently added soil P.  相似文献   

8.
The influence of arbuscular mycorrhizal (AM) fungi on aggregate stability of a semi-arid Indian vertisol was studied in a pot experiment in which Sorghum bicolor (L.) was grown as test plant for 10 weeks. Pasteurized soil inoculated with AM fungi was studied with pasteurized and unpasteurized soils as references. A part of the soil in each pot was placed in nylon mesh bags to separate effects of roots and hyphae. The sorghum plants were planted outside the mesh bags which permitted AM hyphae to enter while excluding roots. Aggregate stability of the soil was determined by wet-sieving and turbidimetric measurements. Development of the AM fungi was quantified as colonized root length and external hyphal length. Soil exposed to growth of roots and hyphae (outside mesh bags) showed aggregates with larger geometric mean diameter (GMD) in pasteurized soil inoculated with AM fungi than in pasteurized uninoculated soil. There was no significant difference in GMD of the inoculated, pasteurized soil and the unpasteurized soil. No significant effects of inoculation or plant growth were found in pasteurized soil exposed to hyphal growth only (inside the mesh bags). However, the unpasteurized soil had significantly higher GMD than the pasteurized soil, irrespective of plants and inoculum. Turbidimetric measurements of soil exposed to roots and hyphae (outside mesh bags) showed the highest aggregate stability for the inoculated pasteurized soil. These results demonstrate that AM fungi contribute to the stabilization of soil aggregates in a vertisol, and that the effect is significant after only one growing season. The effect was associated with both AM hyphae and the stimulation of root growth by AM fungi. The contribution from plant roots and AM hyphae to aggregate stability of different size fractions is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two horizontal compartments contained 100 g soil (quartz sand: clay loam, 1:1) with 0.5 g ground clover leaves labelled with32P. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root compartment by either 37 m or 700 m nylon mesh giving only hyphae or both roots and hyphae, respectively, access to the labelled soil. The recovery of32P from the hyphal compartment was 5.5 and 8.6% for plants colonized withGlomus sp. andG. caledonium, respectively, but only 0.6 % for the non-mycorrhizal controls. Interfungal differences were not related to root colonization or hyphal length densities, which were lowest forG. caledonium. Both fungi depleted the labelled soil of NaHCO3-extractable P and32P compared to controls. A 15–25% recovery of32P by roots was not enhanced in the presence of mycorrhizas, probably due to high root densities in the labelled soil. The experiment confirms that AM fungi differ in P uptake characteristics, and that mycorrhizal hyphae can intercept some P immobilization by other microorganisms and P-sorbing clay minerals.  相似文献   

10.
Forge  Thomas  Muehlchen  Andrea  Hackenberg  Clemens  Neilsen  Gerry  Vrain  Thierry 《Plant and Soil》2001,236(2):185-196
Six species of arbuscular mycorrhizal (AM) fungi (Glomus aggregatum, G. clarum, G. etunicatum, G. intraradices, G. mosseae and G. versiforme) were evaluated, in three greenhouse experiments, for their effects on reproduction of the root-lesion nematode, Pratylenchus penetrans, and growth of Ottawa 3 apple rootstock. Glomus mosseae increased total dry weights of nematode-inoculated and non-inoculated rootstock in all three greenhouse experiments, and G. intraradices increased dry weights in two of three greenhouse experiments. Plants inoculated with G. mosseae generally supported fewer P. penetrans per gram of root than plants inoculated with other AM fungi, but did not differ significantly from the controls in any greenhouse experiment. Colonization of roots by AM fungi was reduced by P. penetrans at initial inoculum densities greater than 250 nematodes/L soil. In field trials, preplant inoculation with either G. intraradices or G. mosseae increased rootstock growth and leaf concentrations of P, Mg, Zn and Cu in fumigated plots but not in non-fumigated plots, indicating that colonization by native AM fungi in non-fumigated plots may have been sufficient for adequate nutrient acquisition. The abundance of vesicles and arbuscules was greater in roots of plants inoculated with AM fungi before planting than in roots of non-inoculated plants, in both fumigated and non-fumigated plots. P. penetrans per gram of root and per 50 ml soil were significantly lower for G. mosseae- inoculated plants than for non-inoculated plants in fumigated soil but not in non-fumigated soil.  相似文献   

11.
Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, × Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.  相似文献   

12.
Zhang Y  Guo LD  Liu RJ 《Mycorrhiza》2004,14(1):25-30
The colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with common pteridophytes were investigated in Dujiangyan, southwest China. Of the 34 species of ferns from 16 families collected, 31 were colonized by AM fungi. The mean percentage root length colonized was 15%, ranging from 0 to 47%. Nineteen species formed Paris-type and 10 intermediate-type AM. In two ferns, only rare intercellular non-septate hyphae or vesicles were observed in the roots and AM type could not be determined. Of the 40 AM fungal taxa belonging to five genera isolated from rooting-zone soils, 32 belonged to Glomus, five to Acaulospora, one to Archaeospora, one to Entrophospora, and one to Gigaspora. Acaulospora and Glomus were the dominant genera and Glomus versiforme was the most common species. The average AM spore density was 213 per 100 g air-dried soil and the average species richness was 3.7 AM species per soil sample. There was no correlation between spore density and percentage root length colonized by AM fungi.  相似文献   

13.
This study investigated the impact of mycorrhizal plants, non-mycorrhizal plants and soil organic matter on the relative abundance of soil hyphae perceived to belong to indigenous arbuscular mycorrhizal (AM) plants. The mycorrhizal plants corn (Zea mays L.) and barley (Hordeum vulgare L.) and a non-mycorrhizal plant, canola (Brassica napus L.), were grown in unsterilized soil in pots inoculated with mycorrhizal corn root fragments. The abundance of hyphae was measured after 5 weeks and the response of fungal growth to the addition of corn residues in the absence of plants was assessed. The abundance of hyphae was higher in the presence of the mycorrhizal plants than in the other treatments. AM hyphae present under mycorrhizal plants accounted for more than 83% of the measured hyphae. The levels of root colonization of 32% in corn and 27% in barley confirmed the mycorrhizal status of the experimental plants. Only a few points of entry were observed in canola, the non-host plant. The percentage of mycorrhizal colonization was positively related (R 2?=?0.85) to the abundance of soil hyphae, indicating that AM hyphae were the major component of the soil hyphae in the presence of mycorrhizal plants in this study.  相似文献   

14.
Biochar may alleviate plant water stress in association with arbuscular mycorrhizal (AM) fungi but research has not been conclusive. Therefore, a glasshouse experiment was conducted to understand how interactions between AM fungi and plants respond to biochar application under water-stressed conditions. A twin chamber pot system was used to determine whether a woody biochar increased root colonisation by a natural AM fungal population in a pasture soil (‘field’ chamber) and whether this was associated with increased growth of extraradical AM fungal hyphae detected by plants growing in an adjacent (‘bait’) chamber containing irradiated soil. The two chambers were separated by a mesh that excluded roots. Subterranean clover was grown with and without water stress and harvested after 35, 49 and 63 days from each chamber. When biochar was applied to the field chamber under water-stressed conditions, shoot mass increased in parallel with mycorrhizal colonisation, extraradical hyphal length and shoot phosphorus concentration. AM fungal colonisation of roots in the bait chamber indicated an increase in extraradical mycorrhizal hyphae in the field chamber. Biochar had little effect on AM fungi or plant growth under well-watered conditions. The biochar-induced increase in mycorrhizal colonisation was associated with increased growth of extraradical AM fungal hyphae in the pasture soil under water-stressed conditions.  相似文献   

15.
Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.  相似文献   

16.
 Forest fire can affect arbuscular mycorrhizal (AM) fungi by changing the soil conditions and by directly altering AM proliferation. We studied the effects of a severe forest fire at Margalla Hills near Islamabad on the number and viability of AM fungal propagules in the burnt soil and their role in the re-establishment of post-fire infection in colonized plants. Compared with a nearby control area, the burnt site had a similar number of total spores but a lower number of viable AM fungal propagules. The roots of the two most frequent species at the burnt site, Dodonaea viscosa and Aristida adscensionis, showed a gradual increase in percentage root length colonized by AM fungi in general and hyphal infection in particular. Our results indicate resumption of mycorrhizal activity following the fire, probably from AM hyphae in the roots of these dominant shrubs. Accepted: 18 July 1997  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land plant species, and developing extensive, below-ground extraradical hyphae fundamental for the uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, they are able to colonize and interconnect contiguous plants by means of hyphae extending from one root system to another. Such hyphae may fuse due to the widespread occurrence of anastomoses, whose formation depends on a highly regulated mechanism of self recognition. Here, we examine evidences of self recognition and non-self incompatibility in hyphal networks formed by AM fungi and discuss recent results showing that the root systems of plants belonging to different species, genera and families may be connected by means of anastomosis formation between extraradical mycorrhizal networks, which can create indefinitely large numbers of belowground fungal linkages within plant communities.Key Words: arbuscular mycorrhizal symbiosis, extraradical mycelium, anastomosis, plant interconnectedness, self recognition, non-self incompatibility, mycorrhizal networks  相似文献   

18.
Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau   总被引:1,自引:0,他引:1  
Gai JP  Cai XB  Feng G  Christie P  Li XL 《Mycorrhiza》2006,16(3):151-157
The arbuscular mycorrhizal (AM) status of nine dominant sedge species and the diversity of AM fungi in Tibetan grassland were surveyed in the autumn of 2003 and 2004. Most of the sedge species and ecotypes examined were mycorrhizal, but Carex moorcroftii and Kobresia pusilla were of doubtful AM status, and Kobresia humilis was facultatively mycorrhizal. This is the first report of the mycorrhizal status of eight of the nine sedge species examined. Intraradical vesicles and aseptate hyphae were the structures most frequently observed. Appressoria, coils, and arbuscules were found in the roots of a few sedge species. A strong negative correlation was found between soil organic matter content and the extent of mycorrhizal colonization. Using trap cultures, 26 species of AM fungi belonging to six genera, Glomus, Acaulospora, Paraglomus, Archaeospora, Pacispora, and Scutellospora, were isolated from the soil samples collected. The frequency of occurrence of different taxa of AM fungi varied greatly. Glomus and Acaulospora were the dominant genera, and Acaulospora scrobiculata was the most frequent and abundant species. The species richness of AM fungi was 2.73 in the study area. Species richness and diversity index differed among the sedge species but were not correlated with soil factors such as pH, available P, or organic matter content.  相似文献   

19.
The presence of high concentrations of arsenic (As) decreased the shoot and root dry weight, chlorophyll and P and Mg content of Eucalyptus globulus colonized with the arbuscular mycorrhizal (AM) fungi Glomus deserticola or G. claroideum, but these parameters were higher than in non-AM plants. As increased the percentage of AM length colonization and succinate dehydrogenase (SDH) activity in the root of E. globulus. Trichoderma harzianum, but not Trametes versicolor, increased the shoot and root dry weight, chlorophyll content, the percentage of AM root length colonization and SDH activity of E. globulus in presence of all As concentrations applied to soil when was inoculated together with G. claroideum. AM fungi increased shoot As and P concentration of E. globulus to higher level than the non-AM inoculated controls. The contribution of the AM and saprobe fungi to the translocation of As from root to shoot of E. globulus is discussed.  相似文献   

20.
Arbuscular mycorrhizae, ubiquitous mutualistic symbioses between plant roots and fungi in the order Glomales, are believed to be important controllers of plant responses to global change, in particular to elevated atmospheric CO2. In order to test if any effects on the symbiosis can persist after long-term treatment, we examined root colonization by arbuscular mycorrhizal (AM) and other fungi of several plant species from two grassland communities after continuous exposure to elevated atmospheric CO2 for six growing seasons in the field. For plant species from both a sandstone and a serpentine annual grassland there was evidence for changes in fungal root colonization, with changes occurring as a function of plant host species. We documented decreases in percentage nonmycorrhizal fungal root colonization in elevated CO2 for several plant species. Total AM root colonization (%) only increased significantly for one out of the five plant species in each grassland. However, when dividing AM fungal hyphae into two groups of hyphae (fine endophyte and coarse endophyte), we could document significant responses of AM fungi that were hidden when only total percentage colonization was measured. We also documented changes in elevated CO2 in the percentage of root colonized by both AM hyphal types simultaneously. Our results demonstrate that changes in fungal root colonization can occur after long-term CO2 enrichment, and that the level of resolution of the study of AM fungal responses may have to be increased to uncover significant changes to the CO2 treatment. This study is also one of the first to document compositional changes in the AM fungi colonizing roots of plants grown in elevated CO2. Although it is difficult to relate the structural data directly to functional changes, possible implications of the observed changes for plant communities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号