首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NAD glycohydrolase (NADase) (EC 3.2.2.5) from Bungarus fasciatus (banded krait) venom was purified (1000-fold) to electrophoretic homogeneity through a 3-step purification procedure, the last step being affinity chromatography on Cibacron blue agarose. The purified NADase is a glycoprotein containing two subunits of Mr = 62,000 each. Nicotinamide and adenosine diphosphoribose were produced in a 1:1 stoichiometry and were the only products formed when the purified NADase was incubated with NAD. These results were confirmed by high performance liquid chromatography. The enzyme exhibited a brod pH profile with optimum pH for hydrolysis at 7.5 with very little change in Km from pH 6.0 to pH 8.5. The NADase is only slightly affected by changes in ionic strength. The enzyme studied titrimetrically at pH 7.5 and 38 degrees C exhibited a Km of 14 microM and a Vmax of 1380 mumol of NAD cleaved/min/mg of protein. The activation energy for the enzyme-catalyzed hydrolysis of NAD was 15.7 kcal/mol. In addition to NAD and NADP, a number of NAD analogs were shown to function as substrates for the enzyme. Product inhibition studies demonstrated nicotinamide to be a noncompetitive inhibitor with a KI of 1.5 mM and adenosine diphosphoribose a competitive inhibitor with a KI of 0.36 mM. Procion blue HB (Cibacron blue F3GA) was shown to be a competitive inhibitor with a KI of 33 nmol. The purified NADase catalyzed the pyridine base exchange reaction between 3-acetylpyridine and the nicotinamide moiety of NAD.  相似文献   

2.
NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD+ and NADP+, the enzyme catalyzed the hydrolysis of several NAD+ analogues and the pyridine base exchange reaction with conversion of NAD+ into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD+ and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a Km value for NAD+ of 26 microM. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition.  相似文献   

3.
Mouse Rt6.1 and Rt6.2, homologues of rat T-cell RT6 antigens, catalyze arginine-specific ADP-ribosylation. Without an added ADP-ribose acceptor, Rt6.2 shows NAD glycohydrolase (NADase) activity. However, Rt6.1 has been reported to be primarily an ADP-ribosyltransferase, but not an NADase. In the present study, we obtained evidence that recombinant Rt6.1 catalyzes NAD glycohydrolysis but only in the presence of DTT. The NADase activity of Rt6.1 observed in the presence of DTT was completely inhibited by N-ethylmaleimide (NEM). Native Rt6.1 antigen, immunoprecipitated from BALB/c mouse splenocytes with polyclonal antibodies generated against recombinant RT6.1, also exhibited NADase activity in the presence of DTT. Compared with Rt6.2, Rt6.1 has two extra cysteine residues at positions 80 and 201. When Cys-80 and Cys-201 in Rt6.1 were replaced with the corresponding residues of Rt6.2, serine and phenylalanine, respectively, Rt6.1 catalyzed the NADase reaction even in the absence of DTT. Conversely, replacing Ser-80 and Phe-201 in Rt6.2 with cysteines, as in Rt6.1, converted the thiol-independent Rt6.2 NADase to a thiol-dependent enzyme. Kinetic study of the NADase reaction revealed that the affinity of Rt6.1 for NAD and the rate of catalysis increased in the presence of DTT. Moreover, the NADase activity of Rt6.1 expressed on COS-7 cells was stimulated by culture supernatant from activated mouse macrophages, even in the absence of DTT. From these observations, we conclude that t!he Rt6.1 antigen has thiol-dependent NADase activity, and that Cys-80 and Cys-201 confer thiol sensitivity to Rt6.1 NADase. Our results also suggest that upon the interaction of T-cells expressing Rt6.1 with activated macrophages, the NADase activity of the antigen will be stimulated.  相似文献   

4.
Mono-ADP-ribosylation, a post-translational modification in which the ADP-ribose moiety of NAD is transferred to an acceptor protein, is catalyzed by a family of amino acid-specific ADP-ribosyltransferases. ADP-ribosyltransferase 5 (ART5), a murine transferase originally isolated from Yac-1 lymphoma cells, differed in properties from previously identified eukaryotic transferases in that it exhibited significant NAD glycohydrolase (NADase) activity. To investigate the mechanism of regulation of transferase and NADase activities, ART5 was synthesized as a FLAG fusion protein in Escherichia coli. Agmatine was used as the ADP-ribose acceptor to quantify transferase activity. ART5 was found to be primarily an NADase at 10 microM NAD, whereas at higher NAD concentrations (1 mM), after some delay, transferase activity increased, whereas NADase activity fell. This change in catalytic activity was correlated with auto-ADP-ribosylation and occurred in a time- and NAD concentration-dependent manner. Based on the change in mobility of auto-ADP-ribosylated ART5 by SDS-polyacrylamide gel electrophoresis, the modification appeared to be stoichiometric and resulted in the addition of at least two ADP-ribose moieties. Auto-ADP-ribosylated ART5 isolated after incubation with NAD was primarily a transferase. These findings suggest that auto-ADP-ribosylation of ART5 was stoichiometric, resulted in at least two modifications and converted ART5 from an NADase to a transferase, and could be one mechanism for regulating enzyme activity.  相似文献   

5.
The localization of NAD+ glycohydrolase [EC 3.2.2.5] (NADase) in purified rat liver nuclei has been examined. Subnuclear fractionation revealed that at least 70% of the NADase in nuclei was associated with the nuclear envelope fraction. The nuclear envelope fraction was practically free of microsomal contamination as judged by electron microscopic morphometry and assays of microsomal marker enzymes. Therefore, NADase was found to be an integral component of the nuclear envelope. The enzymological properties of the nuclear envelope NADase were compared with those of the microsomal enzyme. The nuclear envelope NADase was identical to the microsomal enzyme in its Km for NAD+ (60 muM), pH optimum (pH 6.5), ratio of transglycosidase activity to NADase activity (about 0.5), thermal stability and sensitivity to various inhibitors. Thus, NADase is a common enzymic component of both the nuclear envelope and the endoplasmic reticulum.  相似文献   

6.
NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD.  相似文献   

7.
The presence of NAD-metabolizing enzymes (e.g., ADP-ribosyltransferase (ART)2) on the surface of immune cells suggests a potential immunomodulatory activity for ecto-NAD or its metabolites at sites of inflammation and cell lysis where extracellular levels of NAD may be high. In vitro, NAD inhibits mitogen-stimulated rat T cell proliferation. To investigate the mechanism of inhibition, the effects of NAD and its metabolites on T cell proliferation were studied using ART2a+ and ART2b+ rat T cells. NAD and ADP-ribose, but not nicotinamide, inhibited proliferation of mitogen-activated T cells independent of ART2 allele-specific expression. Inhibition by P2 purinergic receptor agonists was comparable to that induced by NAD and ADP-ribose; these compounds were more potent than P1 agonists. Analysis of the NAD-metabolizing activity of intact rat T cells demonstrated that ADP-ribose was the predominant metabolite, consistent with the presence of cell surface NAD glycohydrolase (NADase) activities. Treatment of T cells with phosphatidylinositol-specific phospholipase C removed much of the NADase activity, consistent with at least one NADase having a GPI anchor; ART2- T cell subsets contained NADase activity that was not releasable by phosphatidylinositol-specific phospholipase C treatment. Formation of AMP from NAD and ADP-ribose also occurred, a result of cell surface pyrophosphatase activity. Because AMP and its metabolite, adenosine, were less inhibitory to rat T cell proliferation than was NAD or ADP-ribose, pyrophosphatases may serve a regulatory role in modifying the inhibitory effect of ecto-NAD on T cell activation. These data suggest that T cells express multiple NAD and adenine nucleotide-metabolizing activities that together modulate immune function.  相似文献   

8.
The gene encoding streptolysin O (slo), a cytolysin of hemolytic streptococci, is transcribed polycistronically from the promoter of the preceding NAD-glycohydrolase (NADase) gene (nga). Between nga and slo, a putative open reading frame (orf1) is located whose function has been totally unknown. Present investigation demonstrated that the orf1 encodes a protein designated as streptococcal NADase inhibitor (SNI). From its nucleotide sequence, SNI was inferred to comprise 161 amino acid residues and the deduced molecular weight was 18,800. This protein was detectable only within cells. Coexpression of SNI was essential for production of streptococcal NADase, and NADase precursor existed as an inactive complex with SNI, in recombinant Escherichia coli. Monomeric NADase and SNI rapidly formed in vitro a stable heterodimer complex in the ratio 1:1, resulting in complete suppression of the hydrolase activity. Unlike other bacterial NADase inhibitors, SNI was thermostable. This protein, coexpressed and complexed with NADase, may protect the producer cocci from exhaustion of NAD.  相似文献   

9.
Lipoamide dehydrogenase (NADH:lipoamide oxidoreductase, EC 1.6.4.3) isolate from pig heart and Escherichia coli was covalently coupled by both diazonium and amide bonds to controlled pore glass beads (96% silica). When the enzyme was immobilized in the presence of NAD+, the enzyme no longer exhibited its normal requirement for NAD+ for full activity. If the immobilized enzyme was then treated with NADase, the requirement for NAD+ was restored. Enzyme immobilized in the absence of NAD+ exhibited normal NAD+ dependence both prior to an after NADase treatment. These results are discussed in terms of co-immobilization of NAD+ at or near the allosteric site of the enzyme.  相似文献   

10.
Bovine seminal fluid NAD glycohydrolase (NADase) was observed to be rapidly inactivated during catalytic hydrolysis of the substrate NAD. The first-order rate constant for the self-inactivation process was independent of enzyme concentration. The enzyme self-inactivation was a turnover-related process and the number of moles of NAD hydrolyzed required for inactivation was proportional to the enzyme concentration. A number of dinucleotides serving as substrates for the enzyme also promoted self-inactivation. The self-inactivation was an irreversible process having a different rate-limiting step from NAD hydrolysis and was not related to the reversible binding of products and substrate-competitive inhibitors. Modification of arginine residues of the enzyme resulted in the loss of NAD hydrolase activity with no differential effect on the self-inactivation process.  相似文献   

11.
A new type of nicotinamide adenine dinucleotide glycohydrolase (NADase) has been isolated from rat liver nuclei. When partially purified chromatin is passed through a Sephadex G-200 column in the presence of 1 M NaCl, enzyme activities catalyzing the liberation of nicotinamide from NAD elute in two peaks. One, which appears in the void volume fraction, hydrolyzes the nicotinamide-ribose linkage of NAD to produce nicotinamide and ADP-ribose in stoichiometric amounts. This activity is not inhibited by 5 mM nicotinamide. The other, which elutes much later, catalyzes the formation of poly(ADP-ribose) from NAD and is completely inhibited by 5 mM nicotinamide. The former, NADase, is DNase-insensitive and thermostable, has a pH optimum of 6.5 to 7, a Km for NAD of 28 muM, and a Ki for nicotinamide of 80 mM, and hydrolyzes NADP as well as NAD. The latter, poly(ADP-ribose) synthetase, is sensitive to DNase treatment and heat labile, has a pH optimum of 8 to 8.5, a Km for NAD of 250 muM and a Ki for nicotinamide of 0.5 mM and is strictly specific for NAD. Further, the former NADase is shown to lack transglycosidase activity, which has been documented to be a general property of NADases derived from animal tissues. These results indicate that the NAD-hydrolyzing enzyme newly isolated from nuclei is a novel type of mammalian NADase which catalyzes the hydrolytic cleavage of the nicotinamide-ribose linkage of NAD.  相似文献   

12.
Murine peritoneal macrophages are able to hydrolyse NAD+ and NADP+. The NADPase activity exceeds that of NADase by 22-24%. The pH optima for both the enzymes are, respectively, 6.0 and 7.0. NAD hydrolysis is considerably activated by Mg2+, whereas NADP hydrolysis remains not affected. NAD+ does not change NADPase activity, while NADase activity is inhibited by NADP by 25-30%. A diazonium salt of sulfanilic acid, known to be an inhibitor of cell plasma membranes, does not affect NADP+ hydrolysis and causes a 20-30% retardation of NAD+ hydrolysis. The data obtained suggest that murine peritoneal macrophages contain two hydrolytic enzymes: NADase and NADPase.  相似文献   

13.
The reaction between NAD and histamine in the presence of purified bull semen nicotinamide adenine dinucleotide nucleosidase (NADase) was studied with respect to the rate of disappearance of the nicotinamide ribosidic linkage of NAD and the rate of the loss of one orcinol-positive ribose of NAD. It was observed that in the presence of this enzyme, 50% of the ribosidic linkage was hydrolyzed prior to any change in orcinol-positive ribose. A nonenzymatic reaction of the product of hydrolysis, adenosine diphosphoribose with histamine was observed to result in the loss of one orcinol-positive ribose. Similar nonenzymatic reactions of histamine were observed with ribose and ribose-5-phosphate. The data suggest that the bull semen NADase does not catalyze a transglycosidation reaction between NAD and histamine as had been claimed previously.  相似文献   

14.
Gel-permeation chromatography and ultrafiltration have been used to study the free and bound forms of NAD in crude extracts prepared from rabbit muscle. Both techniques indicate that over 80% of the endogenous NAD is free.Nicotinamide inhibits the destruction of NAD in muscle homogenates (50% inhibition at 1.6 mm nicotinamide). In the absence of nicotinamide, there is a rapid destruction of free NAD, but a more gradual destruction of bound NAD. The latter result confirms earlier findings that bound NAD is protected from the hydrolytic action of NADase. However, this protection is unlikely to constitute an important mechanism for controlling NADase activity in muscle homogenates because such a small proportion of the endogenous NAD is bound.In the absence of nicotinamide, NAD also disappears rapidly from minced muscle. Interestingly, the NAD/NADH ratio remains constant (NAD/NADH = 18.1–18.5) during the disappearance of NAD in minced muscle. Upon homogenization of the mince, the NAD/NADH ratio abruptly decreases, then slowly increases during subsequent incubation. The latter rise in NAD/NADH ratio appears to be independent of absolute changes in NAD concentration brought about by the action of NADase or the addition of exogenous NAD.  相似文献   

15.
An egg-specific NADase has been purified to homogeneity from the ovotestis of the opisthobranch mollusk Aplysia californica. Unlike other NADases, the Aplysia enzyme generates primarily cyclic-ADP-ribose (cADPR) rather than ADP-ribose from NAD. cADPR has been shown to stimulate the release of Ca2+ from microsomes prepared from sea urchin egg and, when injected into intact eggs, to activate the cortical reaction, multiple nuclear cycles, and DNA synthesis. The Aplysia enzyme was initially identified as an inhibitor of cholera and pertussis toxin-catalyzed ADP-ribosylation. By the use of an NADase assay, it was purified from the aqueous-soluble fraction of ovotestis by sequential column chromatography. The enzyme has an apparent molecular mass of 29 kDa, a Km for NAD of 0.7 mM, and a turnover rate of approximately 27,000 mol NAD.min-1.mol enzyme-1 at 30 degrees C. Monoclonal antibodies were generated to the NADase. Immunoblots of two-dimensional gels revealed multiple isoforms of the enzyme, with pls ranging from 8.1 to 9.8. The multiple isoforms were resolved with a cation exchange high-pressure liquid chromatography column and shown to generate cADPR. Immunohistochemical analysis of cryostat sections of Aplysia ovotestis shows that the enzyme is specific to the eggs and restricted to large 5- to 10-microns granules or vesicles. To date the cADPR-generating enzyme activity has been identified in various organisms, including mammals. The Aplysia enzyme is the first example in which the enzyme that generates cADPR has been purified. All of the available evidence indicates that this NADase is a second-messenger enzyme, implying that other NADases may serve a similar function.  相似文献   

16.
NAD+ glycohydrolase (NADase) present on the surface of rabbit erythrocytes is a membrane-bound ectoenzyme that can be solubilized by phosphatidylinositol-specific phospholipase C (PIPLC). As much as 70% of the cell-associated NADase was made soluble by treatment with PIPLC. The portion of NADase that remained cell-associated after an initial PIPLC treatment proved to be resistant to subsequent solubilization attempts. Further analysis showed that release of NADase from erythrocytes could not be attributed to the action of proteinases or phospholipase C. Erythrocytes obtained from other mammals were analyzed and found to have variable amounts of PIPLC-susceptible NADase. Practically, this finding can be used to easily solubilize membrane-bound NADase as a first step in its purification.  相似文献   

17.
We have characterized the effect of poly(ADP-ribose) polymerase automodification on the enzyme's activities, which include poly(ADP-ribose) synthesis and NADase activity. The apparent Km of the enzyme for NAD+ during polymer synthesis is higher than the one measured for alternate NADase activity. Furthermore, we have found that there are 28 automodification sites, in contrast to the 15 sites (postulated to be on the 15 glutamic acids) reported to be present in the automodification domain. For the first time, we show that some of these acceptor sites are outside the reported automodification domain (15 kDa); we demonstrate automodification in the NAD+ binding domain (55.2 kDa) and the DNA binding domain (42.5 kDa). We have analyzed the relationship between the number of sites modified on poly(ADP-ribose) polymerase and its effect on the polymerization activity and its alternate NADase activity. Automodification greatly altered both enzyme activities, decreasing both polymer synthesis and alternate NADase activity.  相似文献   

18.
HvnA and HvnB are proteins secreted by Vibrio fischeri ES114, an extracellular light organ symbiont of the squid Euprymna scolopes, that catalyze the transfer of ADP-ribose from NAD(+) to polyarginine. Based on this activity, HvnA and HvnB were presumptively designated mono-ADP-ribosyltransferases (ARTases), and it was hypothesized that they mediate bacterium-host signaling. We have cloned hvnA and hvnB from strain ES114. hvnA appears to be expressed as part of a four-gene operon, whereas hvnB is monocistronic. The predicted HvnA and HvnB amino acid sequences are 46% identical to one another and share 44% and 34% identity, respectively, with an open reading frame present in the Pseudomonas aeruginosa genome. Four lines of evidence indicate that HvnA and HvnB mediate polyarginine ADP-ribosylation not by ARTase activity, but indirectly through an NAD(+)-glycohydrolase (NADase) activity that releases free, reactive, ADP-ribose: (i) like other NADases, and in contrast to the ARTase cholera toxin, HvnA and HvnB catalyzed ribosylation of not only polyarginine but also polylysine and polyhistidine, and ribosylation was inhibited by hydroxylamine; (ii) HvnA and HvnB cleaved 1, N(6)-etheno-NAD(+) and NAD(+); (iii) incubation of HvnA and HvnB with [(32)P]NAD(+) resulted in the production of ADP-ribose; and (iv) purified HvnA displayed an NADase V(max) of 400 mol min(-1) mol(-1), which is within the range reported for other NADases and 10(2)- to 10(4)-fold higher than the minor NADase activity reported in bacterial ARTase toxins. Construction and analysis of an hvnA hvnB mutant revealed no other NADase activity in culture supernatants of V. fischeri, and this mutant initiated the light organ symbiosis and triggered regression of the light organ ciliated epithelium in a manner similar to that for the wild type.  相似文献   

19.
Streptolysin O (SLO) is a cholesterol-dependent cytolysin produced by the important human pathogen, group A Streptococcus (Streptococcus pyogenes or GAS). In addition to its cytolytic activity, SLO mediates the translocation of GAS NAD-glycohydrolase (NADase) into human epithelial cells in vitro. Production of both NADase and SLO is associated with augmented host cell injury beyond that produced by SLO alone, but the mechanism of enhanced cytotoxicity is not known. We have now shown that expression of NADase together with SLO dramatically enhanced the lytic activity of GAS culture supernatants for erythrocytes but had no effect on SLO-mediated poration of synthetic cholesterol-rich liposomes. This result revealed a previously unknown contribution of NADase to the cytolytic activity associated with GAS production of SLO. Purified recombinant SLO bound NADase in vitro, supporting a specific, physical interaction of the two proteins. Exposure of human keratinocytes to wild-type GAS, but not to a NADase-deficient mutant strain, resulted in profound depletion of cellular NAD+ and ATP. Furthermore, expression of recombinant GAS NADase in yeast, in the absence of SLO, induced growth arrest, depletion of NAD+ and ATP, and cell death. These findings have provided evidence that the augmentation of SLO-mediated cytotoxicity by NADase is a consequence of depletion of host cell energy stores through the enzymatic action of NADase. Together, the results have provided mechanistic insight into the cytotoxic effects of a unique bipartite bacterial toxin.  相似文献   

20.
Regulation of intracellular levels of NAD: a novel role for CD38   总被引:1,自引:0,他引:1  
Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号