首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨肌肉疲劳过程中sEMG功率谱变化与H 的关系以及可能存在的其它影响因素.方法:利用肌肉进行疲劳收缩结束后,短时间内肌肉pH值尚无明显改变的特性,观察恢复期30 s内s EMG功率谱的变化规律.八名男性受试者,以肱二头肌为目标肌肉,负荷强度为60%MVC,静态持续负荷至疲劳点后,在恢复期以同样负荷分别观察2 s、4 s、6 s、8 s、10 s、20 s、30 s时的sEMG信号特征.结果:肱二头肌在以60%MVC静态疲劳负荷过程中MPF呈线性下降.在疲劳负荷后的恢复期,MPF恢复极其迅速,运动结束后仅2 s,MPF已恢复到整个下降范围的26.5%;至30 s,MPF已恢复到整个下降范围的87.7%.结论:由[H ]增加引起的肌纤维动作电位传导速度下降不是决定sEMG功率谱左移的唯一因素,提示sEMG功率谱左移可能与神经源性的中枢机制的作用有关.  相似文献   

2.
Fatigue of mouse diaphragm muscle in isometric and isotonic contractions   总被引:2,自引:0,他引:2  
Fatiguabilities of mouse diaphragm muscle in vitro in isometric and isotonic contractions were compared in this study. Isolated mouse diaphragm muscle was stimulated repetitively to induce fatigue during both isometric and isotonic contractions. The supramaximal electrical stimulation used was a train of 100-Hz, 0.5-ms pulses delivered to the muscle every 2 s for 0.5 s. The percentage decrease in isometric tension from beginning to end of the fatiguing process was used as the index of fatigue. The experiments were carried out at different PO2 levels in both normal and zero-glucose Ringer solutions. It was found that fatigue developed more rapidly in isotonic contractions than in isometric ones. Also, the extracellular glucose level demonstrated little effect on the muscle's short-term fatiguability, whereas reductions in the extracellular PO2 exerted a profound effect, especially in the case of isotonic fatigue.  相似文献   

3.
A comparison of fatigue as a loss of force with repeated contractions over time was performed in canine respiratory muscle by isometric (nonshortening) and isovelocity (shortening) contractions. In situ diaphragm muscle strips were attached to a linear ergometer and electrically stimulated (30 or 40 Hz) via the left phrenic nerve to produce either isometric (n = 12) or isovelocity (n = 12) contractions (1.5 s) from optimal muscle length (Lo = 8.8 cm). Similar velocities of shortening between isovelocity experiments [0.19 +/- 0.02 (SD) Lo/S] were produced by maximizing the mean power output (Wmax = 210 +/- 27 mW/cm2) that could be developed over 1.5 s when displacement was approximately 0.30 Lo. Initial peak isometric tension was 1.98 kg/cm2, whereas initial peak isovelocity tension was 1.84 kg/mc2 (P less than 0.01) or 93% of initial isometric tension. Fatigue trials of 5 min were conducted on muscles contracting at a constant duty cycle (0.43). At the end of the trials, peak isovelocity tension had fallen to 50% of initial isometric tension (P less than 0.01), whereas peak isometric tension had only fallen by 27%. These results indicate that muscle shortening during force production has a significant influence on diaphragm muscle fatigue. We conclude that the effects of shortening on fatigue must be considered in models of respiratory muscle function, because these muscles typically shorten during breathing.  相似文献   

4.
Contractile properties of the shortening rat diaphragm in vitro   总被引:1,自引:0,他引:1  
Diaphragmatic fatigue has been defined in terms of the failure of the muscle to continue to generate a given level of tension. Appropriate shortening of the diaphragm is, however, just as important for adequate ventilation. In this study we have examined in vitro the contractile properties of the rat diaphragm under afterloaded isotonic conditions and the effect of fatigue on the ability of the diaphragm to shorten. Shortening of the muscle strips was found to depend on size of afterload, frequency of stimulation, duration of stimulation, and initial length of the muscle. The afterloaded isotonic length-tension relationship coincided with the relationship between length and active isometric tension only for relatively small afterloads. Fatigue of the muscle strips, induced by isometric or afterloaded isotonic contractions, was associated with a decline in the extent of shortening as well as a decrease in active isometric tension. Ability to shorten and ability to develop isometric tension did not decrease to the same extent under all conditions. We conclude that active shortening, as well as active isometric tension, is decreased by muscular fatigue and that changes in these properties can be different depending on experimental conditions. The results suggest that the definition of diaphragmatic fatigue should be expanded to include the ability of the muscle to shorten by an appropriate amount. The results also suggest that measurement of isometric performance may not provide a complete estimate of the overall performance of the fatigued diaphragm.  相似文献   

5.
This study examined the effect of high- (75 Hz, 1 min) and low- (5 Hz, 1.5 min) frequency stimulation on contractile and biochemical properties of the diaphragm. Tension was reduced to 21 +/- 1 and 54 +/- 2% (SE) of the initial value after high- and low-frequency stimulation, respectively. After 0, 0.25, 1, and 2 min of recovery from high-frequency stimulation, 5 Hz elicited more force (expressed as % of initial tension) than 75-Hz stimulation. Time 0 recovery values were 21 +/- 1 and 78 +/- 6% of the initial force for 75- and 5-Hz stimulation, respectively. By 1 min of recovery, force elicited by 5-Hz stimulation had returned to the prefatigue value. In contrast, force production with 75-Hz stimulation did not full recover until 10-15 min. After fatigue produced by low-frequency stimulation, force production with 5-Hz stimulation was reduced to 54 +/- 2% of the initial tension, a value significantly lower than the 71 +/- 2% of initial force elicited by 75-Hz stimulation. Force production with 5-Hz stimulation increased rapidly in the first 15 s of recovery (54 +/- 2% at 0 and 70 +/- 2% at 15 s) and by 5 min was significantly greater than the force elicited by 75-Hz stimulation (100 +/- 3 vs. 93 +/- 1%). As before, force production at 75-Hz stimulation did not fully recover until 10-15 min. Both fatigue protocols produced a significant prolongation in isometric twitch contraction and one-half relaxation times. Creatine phosphate (CP) concentration was reduced and muscle lactate increased by both fatigue protocols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The purpose of the present study was to examine the respiratory motor response to diaphragm fatigue. Studies were performed using in situ diaphragm muscle strips dissected from the left costal diaphragm in anesthetized dogs. The left inferior phrenic artery was isolated, and diaphragmatic strip fatigue was elicited by occluding this vessel. Strip tension, strip electromyographic activity, parasternal electromyographic activity, and the electromyogram of the right hemidiaphragm were recorded during spontaneous breathing efforts before, during, and after periods of phrenic arterial occlusion. In separate trials, we examined the neuromuscular responses to phrenic arterial occlusion at arterial PCO2 (PaCO2) of 40, 55, and 75 Torr. No fatigue and no alteration in electromyographic activities were observed in trials at PaCO2 of 40 Torr. During trials at PaCO2 of 55 and 75 Torr, however, diaphragm tension fell, the peak height of the diaphragm strip electromyogram decreased, and the peak heights of the parasternal and right hemidiaphragm electromyograms increased. Relief of phrenic arterial occlusion resulted in a return of strip tension and all electromyograms toward base-line values. In additional experiments, the left phrenic nerve was sectioned in the chest after producing fatigue. Phrenic section was followed by an increase in the peak height of the left phrenic neurogram (recorded above the site of section). This latter finding suggests that diaphragm strip motor drive may be reflexly inhibited during the development of fatigue by neural traffic carried along phrenic afferents.  相似文献   

7.
Effect of low chloride on relaxation in hamster diaphragm muscle   总被引:1,自引:0,他引:1  
With muscle fatigue the chloride (Cl-) conductance of the sarcolemmal membrane decreases. The role of lowered Cl- conductance in the prolongation of relaxation seen with fatigue was studied in isolated hamster diaphragm strips. The muscles were studied in either a Krebs solution or a low Cl- solution in which half of the NaCl was replaced by Na-gluconate. Short tetanic contractions were produced by a 160-ms train of 0.2-ms pulses at 60 Hz from which tension (T) and the time constant of relaxation were measured. Resting membrane potential (Em) was measured using KCl-filled microelectrodes with resistances of 15-20 M omega. Mild fatigue (20% fall in tension) was induced by 24-25 tetanic contractions at the rate of 2/s. There was no difference in Em or T in the two solutions, either initially or with fatigue. The time constant of relaxation was greater in low Cl- solution, both initially (22 +/- 3 vs. 18 +/- 5 ms, mean +/- SD, P less than 0.05) and with fatigue (51 +/- 18 vs. 26 +/- 7 ms, P less than 0.005). Lowering of sarcolemmal membrane Cl- conductance appears to play a role in the slowing of relaxation of hamster diaphragm muscle seen with fatigue.  相似文献   

8.
We hypothesized that decrements in maximum power output (W(max)) of the rat diaphragm (Dia) muscle with repetitive activation are due to a disproportionate reduction in force (force fatigue) compared with a slowing of shortening velocity (velocity fatigue). Segments of midcostal Dia muscle were mounted in vitro (26 degrees C) and stimulated directly at 75 Hz in 400-ms-duration trains repeated each second (duty cycle = 0.4) for 120 s. A novel technique was used to monitor instantaneous reductions in maximum specific force (P(o)) and W(max) during fatigue. During each stimulus train, activation was isometric for the initial 360 ms during which P(o) was measured; the muscle was then allowed to shorten at a constant velocity (30% V(max)) for the final 40 ms, and W(max) was determined. Compared with initial values, after 120 s of repetitive activation, P(o) and W(max) decreased by 75 and 73%, respectively. Maximum shortening velocity was measured in two ways: by extrapolation of the force-velocity relationship (V(max)) and using the slack test [maximum unloaded shortening velocity (V(o))]. After 120 s of repetitive activation, V(max) slowed by 44%, whereas V(o) slowed by 22%. Thus the decrease in W(max) with repetitive activation was dominated by force fatigue, with velocity fatigue playing a secondary role. On the basis of a greater slowing of V(max) vs. V(o), we also conclude that force and power fatigue cannot be attributed simply to the total inactivation of the most fatigable fiber types.  相似文献   

9.
The effects of inspired O2 on diaphragm tension development during fatigue were assessed using isovelocity (n = 6) and isometric (n = 6) muscle contractions performed during a series of exposures to moderate hypoxia [fraction of inspired O2 (FIO2) = 0.13], hyperoxia (FIO2 = 1), and severe hypoxia (FIO2 = 0.09). Muscle strips were created in situ from the canine diaphragm, attached to a linear ergometer, and electrically stimulated (30 Hz) to contract (contraction = 1.5 s/relaxation = 2 s) from optimal muscle length (Lo = 8.9 cm). Isovelocity contractions shortened to 0.70 Lo, resulting in a mean power output of 210 mW/cm2. Fatigue trials of 35 min duration were performed while inspired O2 was sequentially changed between the experimental mixtures and normoxia (FIO2 = 0.21) for 5-min periods. In this series, severe hypoxia consistently decreased isovelocity tension development by an average of 0.1 kg/cm2 (P less than 0.05), which was followed by a recovery of tension (P less than 0.05) on return to normoxia. These responses were not consistently observed in isometric trials. Neither isovelocity nor isometric tension development was influenced by moderate hypoxia or hyperoxia. These results demonstrate that the in situ diaphragm is relatively insensitive to rapid changes in O2 supply over a broad range and that the tension development of the shortening diaphragm appears to be more susceptible to severe hypoxia during fatigue. This may reflect a difference in either the metabolic or blood flow characteristics of shortening contractions of the diaphragm.  相似文献   

10.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

11.
Fatigue and recovery from fatigue were related to metabolism in single fibers of the frog semitendinosus muscle. The fibers were held at a sarcomere length of 2.3 microm in oxygenated Ringer solution at 15 degrees C and were stimulated for up to 150 s by a schedule of 10-s, 20-Hz tetanic trains that were interrupted by 1-s rest periods, after which they were rapidly frozen for biochemical analysis. Two kinds of fatigue were produced in relation to stimulus duration. A rapidly reversed fatigue occurred with stimulation for under 40 s and was evidenced by a decline in tetanic tension that could be overcome by 1 s of rest. A prolonged fatigue was caused by stimulation for 100-150 s. It was evidenced during stimulation by a fall in tetanic tension that could not be overcome by 1 s of rest, and after stimulation by a reduction, lasting for up to 82 min, in the peak tension of a 200-ms test tetanus. Fiber phosphocreatine (PCr) fell logarithmically in relation to stimulus duration, from a mean of 121 +/- 8 nmol/mg protein (SEM, n = 12) to 10% of this value after 150 s of stimulation. PCr returned to normal levels after 90-120 min of rest. Stimulation for 150 s did not significantly affect fiber glycogen and reduced fiber ATP by at most 15%. It is suggested that the prolonged fatigue caused by 100-150 s of tetanic stimulation was caused by long-lasting failure of excitation-contraction coupling, as it was not accompanied by depletion of energy stores in the form of ATP. One possibility is that H+ accumulated in fatigued fibers so as to interfere with the action of Ca2+ in the coupling process.  相似文献   

12.
Temperature dependence of rat diaphragm muscle contractility and fatigue   总被引:1,自引:0,他引:1  
The diaphragm is a skeletal muscle of mixed fiber type that is unique in its requirement to maintain contractile function and fatigue resistance across a wide range of temperatures to sustain alveolar ventilation under conditions of hypo- or hyperthermia. The direct effect of temperature (15-41 degrees C) on rat diaphragm isometric contractility and fatigue was determined in vitro. As temperature decreased from 37 to 15 degrees C, contraction and relaxation times increased, and there was a left shift of the diaphragm's force-frequency curve, with decreased contractility at 41 and 15 degrees C. Fatigue was induced by 10 min of stimulation with 30 trains/min of 5 Hz at a train duration of 900 ms. Compared with 37 degrees C, fatigue resistance was enhanced at 25 degrees C, but no difference in fatigue indexes was evident at extreme hypothermia (15 degrees C) or hyperthermia (41 degrees C). Only when the fatigue program was adjusted to account for hypothermia-induced increases in tension-time indexes was fatigue resistance evident at 15 degrees C. These findings indicate that despite the diaphragm's unique location as a core structure, necessitating exposure to in vivo temperatures higher than found in limb muscle, the temperature dependence of rat diaphragm muscle contractility and fatigue is similar to that reported for limb muscle of mixed fiber type.  相似文献   

13.
Recording a superimposed electrically-induced contraction at the limit of endurance during voluntary contraction is used as an indicator of failure of muscle activation by the central nervous system and discards the existence of peripheral muscle fatigue. We questioned on the reliability of this method by using other means to explore peripheral muscle failure. Fifteen normal subjects sustained handgrip at 60% of maximal voluntary contraction (MVC) until exhaustion. During sustained contraction, the power spectrum analysis of the flexor digitorum surface electromyogram allowed us to calculate the leftward shift of median frequency (MF). A superimposed 60 Hz 3 s pulse train (burst superimposition) was delivered to the muscle when force levelled off close to the preset value. Immediately after the fatigue trial had ended, the subject was asked to perform a 5 s 60% MVC and we measured the peak contractile response to a 60 Hz 3 s burst stimulation. Recordings of the compound evoked muscle action potential (M-wave) allowed us to explore an impairment of neuromuscular propagation. A superimposed contraction was measured in 7 subjects in their two forearms, whereas it was absent in the 8 others. Despite these discrepancies, all subjects were able to reproduce a 3 s 60% MVC immediately after the fatigue trial ended and there was no post-fatigue decrease of contraction elicited by the 60 Hz 3 s burst stimulation, as well as no M-wave decrease in amplitude and conduction time. Thus, there was no indication of peripheral muscle fatigue. MF decrease was present in all individuals throughout the fatiguing contraction and it was not correlated with the magnitude of superimposed force. These observations indicate that an absence of superimposed electrically-induced muscle contraction does not allow us to conclude the existence of a sole peripheral muscle fatigue in these circumstances.  相似文献   

14.
15.
The present study examined respiratory muscle endurance and the magnitude of the sense of effort during inspiratory threshold loading following a dose of caffeine (600 mg) previously observed to increase diaphragm strength. Experiments were performed on 12 normal subjects. Respiratory muscle endurance at a given level of load was assessed from the time of exhaustion and from the time course of the change in the power spectrum (centroid frequency) of the diaphragm electromyogram (EMG). The intensity of the sense of effort during loaded breathing was evaluated using a category (Borg) scale. Increasingly severe loads were associated with more rapid onset of fatigue. At a given load, caffeine prolonged the time to exhaustion and decreased the rate of fall of the centroid frequency of the diaphragm EMG. Caffeine also decreased the sense of effort during loaded breathing in 9 of 11 subjects. Changes in respiratory muscle endurance after caffeine administration were not explained by changes in the pressure-time index of the respiratory muscles or the pattern of thoracoabdominal movement. We conclude that caffeine enhances inspiratory muscle endurance, while concomitantly reducing the sense of effort associated with fatiguing inspiratory muscle contractions.  相似文献   

16.
The arrangement of muscle spindles in m. ext. long. dig. IV has been examined by microdissection. It is confirmed that spindle systems generally appear to consist of individual receptors. Stimulation effects of fast motor fibres (conduction velocities greater than 12 m/sec) on the spindles of the same muscle were studied. Receptors were isolated with their nerves and the appropriate spinal roots, the latter ones were used for stimulating efferent fibres and recording sensory discharges. Single shocks to the ventral root filaments caused afferent responses ranging from a single action potential to a train of impulses. During repetitive stimulation (train of stimuli at frequency of 10 to 150/sec) a marked increase in afferent activity was found. Afferent activity could be driven by the frequency of stimuli ("driving") and the stimulus/action potentials ratio varied from 1:1 to 1:3 or more. The rate of sensory discharge depended on the frequency of stimuli: the maximum effect, was attained at 30 to 50 stimuli/sec and, in the most responsive receptors, up to 80 stimuli/sec. Slight increases of the initial lengths of the receptors caused facilitation of sensory responses to motor stimulation. Moreover, impairing effects, which appear during sustained or high-frequency stimulation, possibly related to fatigue in intrafusal neuromuscular transmission, could be relieved by increasing the initial length. The repetitive stimulation of fast fusimotor fibres increased both dynamic and static responses and also raised the afferent activity after a period of stretching, when usually a depression occurs; these effects varied according to the preparation, its initial tension and the frequency of stimulation. The main feature of the examined motor fibres, when stimulated, is the constant excitatory action on muscle spindle static response. Results are discussed. It is suggested that the different characteristics of intrafusal muscle fibres, the receptor initial tension and the frequency of motor units discharges, may together affect muscle spindles static or dynamic performance.  相似文献   

17.
Relative contribution of neurotransmission failure to diaphragm fatigue   总被引:1,自引:0,他引:1  
Two procedures were used to estimate the relative contribution of neurotransmission failure (NF) to fatigue of the rat diaphragm at different rates of phrenic nerve stimulation. In one, direct muscle stimulation was intermittently superimposed on neural stimulation of the diaphragm, and the relative contribution of NF was estimated by the difference in generated tension. In a second procedure, diaphragm fatigue was induced by using either direct muscle stimulation (with complete blockade of the neuromuscular junction by d-tubocurare) or phrenic nerve stimulation. The relative contribution of NF to diaphragm fatigue was then estimated by comparing the force loss during these two modes of stimulation. With both procedures, it was observed that 1) the relative contribution of NF to diaphragm fatigue was less than 45% at each frequency of phrenic nerve stimulation; 2) the relative contribution of NF to diaphragm fatigue increased at higher rates of phrenic stimulation, reaching a maximum at 75 pulses/s; and 3) the relative contribution of NF to diaphragm fatigue reached a plateau after 2 min of repetitive stimulation.  相似文献   

18.
Agents that block many types of K+ channels (e.g., the aminopyridines) have substantial inotropic effects in skeletal muscle. Specific blockers of ATP-sensitive and Ca2+-activated K+ channels, on the other hand, do not, or minimally, alter the force of nonfatigued muscle, consistent with a predominant role for voltage-gated K+ channels in regulating muscle force. To test this more directly, we examined the effects of peptide toxins, which in other tissues specifically block voltage-gated K+ channels, on rat diaphragm in vitro. Twitch force was increased in response to alpha-, beta-, and gamma-dendrotoxin and tityustoxin Kalpha (17 +/- 6, 22 +/- 5, 42 +/- 14, and 13 +/- 5%; P < 0.05, < 0.01, < 0.05, < 0.05, respectively) but not in response to delta-dendrotoxin or BSA (in which toxins were dissolved). Force during 20-Hz stimulation was also increased significantly by alpha-, beta-, and gamma-dendrotoxin and tityustoxin Kalpha. Among agents, increases in twitch force correlated with the degree to which contraction time was prolonged (r = 0.88, P < 0.02). To determine whether inotropic effects could be maintained during repeated contractions, muscle strips underwent intermittent 20-Hz train stimulation for a duration of 2 min in presence or absence of gamma-dendrotoxin. Force was significantly greater with than without gamma-dendrotoxin during repetitive stimulation for the first 60 s of repetitive contractions. Despite the approximately 55% higher value for initial force in the presence vs. absence of gamma-dendrotoxin, the rate at which fatigue occurred was not accelerated by the toxin, as assessed by the amount of time over which force declined by 25 and 50%. These data suggest that blocking voltage-activated K+ channels may be a useful therapeutic strategy for augmenting diaphragm force, provided less toxic blockers of these channels can be found.  相似文献   

19.
The purpose of this study was to determine whether the human diaphragm, like limb muscle, has a threshold of force output at which a metaboreflex is activated causing systemic vasoconstriction. We used Doppler ultrasound techniques to quantify leg blood flow (Q(L)) and utilized the changes in mouth twitch pressure (DeltaP(M)T) in response to bilateral phrenic nerve stimulation to quantify the onset of diaphragm fatigue. Six healthy male subjects performed four randomly assigned trials of identical duration (8 +/- 2 min) and breathing pattern [20 breaths/min and time spent on inspiration during the duty cycle (time spent on inspiration/total time of one breathing cycle) was 0.4] during which they inspired primarily with the diaphragm. For trials 1-3, inspiratory resistance and effort was gradually increased [30, 40, and 50% maximal inspiratory pressure (MIP)], diaphragm fatigue did not occur, and Q(L), limb vascular resistance (LVR), and mean arterial pressure remained unchanged from control (P > 0.05). The fourth trial utilized the same breathing pattern with 60% MIP and caused diaphragm fatigue, as shown by a 30 +/- 12% reduction in P(M)T with bilateral phrenic nerve stimulation. During the fatigue trial, Q(L) and LVR were unchanged from baseline at minute 1, but LVR rose 36% and Q(L) fell 25% at minute 2 and by 52% and 30%, respectively, during the final minutes of the trial. Both LVR and Q(L) returned to control within 30 s of recovery. In summary, voluntary increases in inspiratory muscle effort, in the absence of fatigue, had no effect on LVR and Q(L), whereas fatiguing the diaphragm elicited time-dependent increases in LVR and decreases in Q(L). We attribute the limb vasoconstriction to a metaboreflex originating in the diaphragm, which reaches its threshold for activation during fatiguing contractions.  相似文献   

20.
Alterations of the electromyographic power spectrum have been studied extensively to assess fatigue development in the neuromuscular system. Usually, a data reduction has been applied to create an index based on the mean power frequency or the median frequency. The physiological origin of the spectrum alterations has been (and to some extent still is) incompletely known. However, during the 1980s, substantial progress has been made in this field. The factors affecting the electromyographic power spectrum discussed in this review are action potential velocity decrease, firing statistics alterations, action potential modification, muscle temperature, additional recruitment at fatigue, and force level. Their impact on three commonly used fatigue indexes, mean power frequency, median frequency, and zero crossing rate, is also reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号