首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Treatment of wheat straw with 1N trifluoroacetic acid (TFA) for 7 h at reflux temperature yielded 23% xylose based upon initial straw weight. This corresponds to about an 80% xylose yield based on the xylan content of the hemicellulose. The cellulose component of wheat straw was largely unaffected, as evidenced by low glucose yields. Decomposition of xylose by prolonged refluxing (23 h) was minimal in 1N TFA compared to 1N HCl. Treatment of wheat straw with refluxing 1N TFA converts about 10% of the lignin initially present in straw into water-soluble lignin fragments. Fermentation of the xylose-rich wheat straw hydrolyzate to ethanol with Pachysolen tannophilus was comparable to the fermentation of reagent grade xylose, indicating that furfural and toxic lignin by-products were not produced by 1N TFA in sufficient amounts to impair cell growth and ethanol production. Cellulase treatment of the wheat straw residue after TFA hydrolysis resulted in a 70-75% conversion of the cellulose into glucose.  相似文献   

2.
Wan C  Li Y 《Bioresource technology》2011,102(20):9788-9793
Exhaustive hot water extraction (HWE) and liquid hot water (LHW) pretreatment were evaluated for their effects on degradation of biomass feedstocks (i.e., corn stover, wheat straw, and soybean straw) by Ceriporiopsis subvermispora. HWE (85 °C for 10 min) partially removed water soluble extractives and subsequently improved fungal degradation on wheat straw while it had little or no effect on the fungal degradation of corn stover and soybean straw. In contrast, LHW pretreatment at 170 °C for 3 min improved the fungal degradation of soybean straw; thus, lignin removal of 36.70% and glucose yield of 64.25% were obtained from the combined LHW and fungal pretreatment. However, corn stover, which was effectively degraded by fungal pretreatment alone, was less affected by this combined pretreatment. Our results indicated that a HWE or LHW pretreatment conducted under mild conditions worked synergistically with fungal degradation for some recalcitrant feedstocks.  相似文献   

3.
作物秸秆是重要的农业资源,为有效利用作物秸秆,本文利用枯草芽胞杆菌发酵玉米秸秆,配制成人工饲料来饲养家蝇。从菌液加入量和发酵天数来考察对家蝇饲养效果的影响,结果表明:枯草芽胞杆菌菌液加入量为3 mL(3.2×10~(11)cfu/mL),发酵天数3d时对家蝇饲养效果较好,幼虫质量为16.91g,与不加菌液的对照组(13.30g)相比存在显著性差异(P0.05)。经过枯草芽胞杆菌发酵和家蝇幼虫处理后,玉米秸秆的纤维素、半纤维素、木质素的绝对含量都显著降低(P0.05)。经过家蝇取食后的饲料残渣,经检测,有机质等均达到国家标准。最优家蝇饲料配方为:枯草芽胞杆菌菌液加入量3mL(3.2×10~(11) cfu/mL),发酵天数3d,玉米秸秆和麦麸各125g,每250g饲料添加初孵幼虫200mg。本研究利用枯草芽胞杆菌发酵玉米秸秆,提高其营养价值,并进一步饲养家蝇,为秸秆的资源化利用和家蝇规模化饲养奠定了基础。  相似文献   

4.
Wheat and rye straws were pretreated with ozone to increase the enzymatic hydrolysis extent of potentially fermentable sugars. Through a 2(5-1) factorial design, this work studies the influence of five operating parameters (moisture content, particle size, ozone concentration, type of biomass and air/ozone flow rate) on ozonization pretreatment of straw in a fixed bed reactor under room conditions. The acid insoluble lignin content of the biomass was reduced in all experiments involving hemicellulose degradation. Near negligible losses of cellulose were observed. Enzymatic hydrolysis yields of up to 88.6% and 57% were obtained compared to 29% and 16% in non-ozonated wheat and rye straw respectively. Moisture content and type of biomass showed the most significant effects on ozonolysis. Additionally, ozonolysis experiments in basic medium with sodium hydroxide evidenced a reduction in solubilization and/or degradation of lignin and reliable cellulose and hemicellulose degradation.  相似文献   

5.
酵母发酵玉米秸秆水解液产麦角甾醇应用研究   总被引:1,自引:0,他引:1  
宋公明  刘娇  薛冬桦 《微生物学通报》2008,35(12):1862-1867
生物质是一种可再生资源,生物质发酵可产生高端化工产品.本文主要探讨蒸汽爆破处理玉米秸秆及水解可发酵单糖,考察酵母发酵玉米秸秆糖化液产麦角甾醇的应用研究.实验结果表明:当固液比10%,盐酸浓度1.5%,90℃水解反应3 h,还原糖含量达到53.3%,纤维素转化率79%.发酵工艺参数为玉米秸秆糖化液6.0°Bx,玉米浆4%,pH 7.5,接种量10%,28℃摇床振荡培养32 h,细胞生物量达8.5 g/L,麦角甾醇含量可达2.35%.同时对玉米秸秆发酵产麦角甾醇晶体进行结构表征.  相似文献   

6.
Zhong W  Zhang Z  Luo Y  Sun S  Qiao W  Xiao M 《Bioresource technology》2011,102(24):11177-11182
A biological pretreatment with new complex microbial agents was used to pretreat corn straw at ambient temperature (about 20°C) to improve its biodegradability and anaerobic biogas production. A complex microbial agent dose of 0.01% (w/w) and pretreatment time of 15 days were appropriate for biological pretreatment. These treatment conditions resulted in 33.07% more total biogas yield, 75.57% more methane yield, and 34.6% shorter technical digestion time compared with the untreated sample. Analyses of chemical compositions showed 5.81-25.10% reductions in total lignin, cellulose, and hemicellulose contents, and 27.19-80.71% increases in hot-water extractives; these changes contributed to the enhancement of biogas production. Biological pretreatment could be an effective method for improving biodegradability and enhancing the highly efficient biological conversion of corn straw into bioenergy.  相似文献   

7.
Li Z  Zhao W  Meng B  Liu C  Zhu Q  Zhao G 《Bioresource technology》2008,99(16):7616-7622
With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.  相似文献   

8.
Efficient methods for lignin characterisation are increasingly important as the field of lignin valorisation is growing with the increasing use of lignocellulosic feedstocks, such as wheat straw and corn stover, in biorefineries. In this study, we characterised a set of authentic lignin biorefinery samples in situ with no prior purification and minimal sample preparation. Lignin chemical formulas and lignin Fourier transform infrared (FTIR) spectra were extracted from mixed spectra by filtering out signals from residual carbohydrates and minerals. From estimations of C, H and O and adjustment for cellulose and hemicelluloses contents, the average chemical formula of lignin was found to be C9H10.2O3.4 with slight variations depending on the biomass feedstock and processing conditions (between C9H9.5O2.8 and C9H11.1O3.6). Extracted FTIR lignin spectra showed many of the same characteristic peaks as organosolv and kraft lignin used as benchmark samples. Some variations in the lignin spectra of biorefinery lignin residue samples were found depending on biomass feedstock (wheat straw, corn stover or poplar) and on pretreatment severity, especially in the absorbance of bands at 1267 and 1032 cm?1 relative to the strong band at ~1120 cm?1. The suggested method of FTIR spectral analysis with adjustment for cellulose and hemicellulose is proposed to provide a fast and efficient way of analysing lignin in genuine lignin samples resulting from biorefineries.  相似文献   

9.
Coir pith represents ∼50% of the waste from the coir industries and was tested for its potential in serving as a growth substrate for the production of species of oyster mushroom, Pleurotus florida. Due to its high lignin (∼48%) content and amorphous powdery nature, coir pith supported poor mushroom mycelial growth and yields were considerably low (∼25% bioconversion efficiency). Pre-treating coir pith with hot water did not prove economical to produce the mushroom yields. Acid swelling and alkali delignification of coir pith though served to change the structure of coir pith; the mushroom yields were not improved. Amendment of coir pith with rice (Oryza sativa) straw and horse gram (Dolichos biflorus) plant residue tended to greatly modify the physical characteristics of the inoculated mushroom bed. Such a supplementation of coir pith growth substrate resulted in production of mushroom yields with 110–125% bioconversion efficiency. Implications of supplementing coir pith with rice straw/horse gram plant residue in terms of holocellulose:lignin ratio are discussed. Sensorially, the mushrooms so produced did not differ from that on rice straw, the economic growth substrate recommended for production of the mushroom yields on commercial scale. Changes in cellulose, hemicellulose and lignin contents of coir pith amended with rice straw were studied. Cellulase, hemicellulase and protease enzyme activities in the amended coir pith substrate showed a continuous increase from inoculation till the end of fructification, whereas laccase activity decreased during fructification, in consonance with decreased lignin degradation during fructification.  相似文献   

10.
An unpolluted process of wheat straw fractionation by steam explosion coupled with ethanol extraction was studied. The wheat straw was steam exploded for 4.5 min with moisture of 34.01%, a pressure of 1.5 MPa without acid or alkali. Hemicellulose sugars were recovered by water countercurrent extraction and decolored with chelating ion exchange resin D412. The gas chromatography (GC) and high-performance liquid chromatography (HPLC) analysis results indicated that there were organic acids in the hemicellulose sugars and the ratio of monosaccharides to oligosaccharides was 1:9 and the main component, xylose, was 85.9% in content. The total recovery rate of hemicellulose was 80%. Water washed materials were subsequently extracted with ethanol. The optimum extraction conditions in this work were 40% ethanol, fiber/liquor ratio 1:50 (w/v), severity log(R)=3.657 (180 degrees C for 20 min), 0.1% NaOH. The lignin yield was 75% by acid precipitation and 85% ethanol solvent was recovered. The lignin was purified using Bj?rkman method. Infrared spectrometry (IR) results indicated that the lignin belonged to GSH (guaiacyl (G) syringyl (S) and p-hydroxyphenyl (H)) lignin and its purity rate reached 85.3%. The cellulose recovery rate was 94% and the results of electron spectroscopy for chemical analysis (ESCA) and infrared spectrometry (IR) showed that hemicellulose and lignin content decreased after steam explosion and ethanol extraction.  相似文献   

11.
Kumar A  Gaind S  Nain L 《Biodegradation》2008,19(3):395-402
Out of 10 thermophilic fungi isolated from wheat straw, farm yard manure, and soil, only three showed highest cellobiase, carboxymethyl cellulase, xylanase, and FPase activities. They were identified as Aspergillus nidulans (Th4), Scytalidium thermophilum (Th5), and Humicola sp. (Th10). A fungal consortium of these three fungi was used to compost a mixture (1:1) of silica rich paddy straw and lignin rich soybean trash. The composting of paddy straw for 3 months, during summer period in North India, resulted in a product with C:N ratio 9.5:1, available phosphorus 0.042% and fungal biomass 6.512 mg of N-acetyl glucosamine/100 mg of compost. However, a C:N ratio of 10.2:1 and highest humus content of 3.3% was achieved with 1:1 mixture of paddy straw and soybean trash. The fungal consortium was effective in converting high silica paddy straw into nutritionally rich compost thereby leading to economical and environment friendly disposal of this crop residue.  相似文献   

12.
不同菌株固态发酵玉米秸秆生产饲料蛋白的比较研究   总被引:15,自引:0,他引:15  
李日强  张峰 《生态学报》2001,21(9):1512-1518
利用24株能够降解纤维素和木质素的菌种对玉米秸秆粉进行了单菌株发酵、多菌株组合发酵以及不同氮源发酵生产饲料蛋白的比较研究.结果表明24株单菌株发酵中F-21的发酵产物真蛋白含量最高(平均为7.64%);以F-5,F-17,F-21和F-24组成的多菌株发酵体系,经3d发酵后,发酵产物粗蛋白含量由2.80%提高到10.07%,比原料本身的粗蛋白含量高259.6%;粗纤维含量由38.17%降低到36.07%;氨基酸总量由2.1%增加到5.7%,比原料本身高171.4%,且氨基酸种类齐全;尿素和(NH4)2SO4的添加量与发酵产物真蛋白含量的关系呈抛物线,对相同添加量以尿素效果较好,而在尿素中,2%的添加量为最好.聚类分析将24株单菌株发酵后真蛋白含量和对照分为4组,其中G3{F-1,F-21}发酵效果最好.G1{F-3,F-5,F-6,F-7,F-8,F-12,F-13,F-15,F-17,F-19,F-20,F-22}次之,G2{F-2,F-4,F-9,F-10,F-11,F-14,F-18,F-23,F-24}较差,G4{对照,F-16}最差.试验结果表明,由F-5,F-17,F-21和F-24组成的多菌株发酵体系为发酵秸秆生产饲料蛋白的优良菌株.  相似文献   

13.
Wang C  Pan J  Li J  Yang Z 《Bioresource technology》2008,99(8):2778-2786
The objective of this study is to investigate the distribution of products, i.e. gas, liquid oil and char from four different biomass samples (legume straw, corn stalk, cotton stalk and wheat straw) and analysis of the oil for the differences in the hydrocarbon composition with respect to the materials by deoxygenate liquefaction (abbr. deoxy-liquefaction). GC/MS was used to analyze the gas and oil components. According to the similarity of the natural petroleum and bio-petroleum, a new standard for bio-petroleum was established in this paper. The striking characteristic of the bio-petroleum was H/C>1.5, oxygen content <6% and the HHV>40 MJ/kg, containing mainly alkanes, cycloalkanes and aromatic hydrocarbons. In this paper, only the oil produced from legume straw and corn stalk could be called bio-petroleum. The oil derived from different samples contained almost the same compounds, while the relative content varied based on the different content of the main biomass components (lignin and holocellulose). The gaseous products were carbon dioxide, carbon monoxide, methane and hydrogen. In addition, small amount of ethylene, ethane and propane was also observed in gas. The major gas product was carbon dioxide (81.29-86.33%) for all samples.  相似文献   

14.
Correlating the effect of pretreatment on the enzymatic hydrolysis of straw   总被引:4,自引:0,他引:4  
Avicell, Alkali-treated straw cellulose (ATSC), and wheat straw were ball-milled to reduce crystallinity; wheat straw was delignified by hot (120 degrees C) sodium hydroxide solutions of various concentrations. The physically and chemically pretreated cellulosic materials were hydrolyzed by the cellulases of Fusarium oxysporum strain F3. Enzymic hydrolysis data were fitted by the hyperbolic correlation of Holtzapple, which involves two kinetic parameters, the maximum conversion (X(max)), and the enzymic hydrolysis time corresponding to 50% of X(max) (t(1/2)). An empirical correlation between X(max) and cellulose crystallinity, lignin content, and degree of delignification has been found under our experimental conditions. Complete cellulose hydrolysis is shown to be possible at less than 60% crystallinity indices or less than 10% lignin content.  相似文献   

15.
Characteristics of degraded cellulose obtained from steam-exploded wheat straw   总被引:13,自引:0,他引:13  
The isolation of cellulose from wheat straw was studied using a two-stage process based on steam explosion pre-treatment followed by alkaline peroxide post-treatment. Straw was steamed at 200 degrees C, 15 bar for 10 and 33 min, and 220 degrees C, 22 bar for 3, 5 and 8 min with a solid to liquid ratio of 2:1 (w/w) and 220 degrees C, 22 bar for 5 min with a solid to liquid ratio of 10:1, respectively. The steamed straw was washed with hot water to yield a solution rich in hemicelluloses-derived mono- and oligosaccharides and gave 61.3%, 60.2%, 66.2%, 63.1%, 60.3% and 61.3% of the straw residue, respectively. The washed fibre was delignified and bleached by 2% H2O2 at 50 degrees C for 5 h under pH 11.5, which yielded 34.9%, 32.6%, 40.0%, 36.9%, 30.9% and 36.1% (% dry wheat straw) of the cellulose preparation, respectively. The optimum cellulose yield (40.0%) was obtained when the steam explosion pre-treatment was performed at 220 degrees C, 22 bar for 3 min with a solid to liquid ratio of 2:1, in which the cellulose fraction obtained had a viscosity average degree of polymerisation of 587 and contained 14.6% hemicelluloses and 1.2% klason lignin. The steam explosion pre-treatment led to a significant loss in hemicelluloses and alkaline peroxide post-treatment resulted in substantial dissolution of lignin and an increase in cellulose crystallinity. The six isolated cellulose samples were further characterised by FT-IR and 13C-CP/MAS NMR spectroscopy and thermal analysis.  相似文献   

16.
Bioconversion of wheat straw using Phanerochaete chrysosporium was carried out in a 200l staged vertical reactor. The bioconversion process was characterized by measuring the percentage degradation of lignin and cellulose, and increment in crude protein content. The effect of airflow rate, inoculum amount and wheat straw loading on bioconversion was investigated using a statistical experimental design. An analysis of variance was performed to determine response surfaces. The quality of bioconversion indicated by an optimization index called the desirability coefficient had the highest value of 0.75 for the fifth day of cultivation. This corresponded to an operating condition of 1.5kg wheat straw per stage using an inoculum amount of 0.38g (100g dry wheat straw)(-1) and an airflow rate of 15lmin(-1). The lignin and cellulose degradation achieved at this operating condition was 27% and 29%, respectively. A ratio of 3 for the weight of wheat straw to inoculum amount gave the highest crude protein of 5.9% on dry weight basis. Among the variables investigated, the airflow rate exhibited a significant effect on the quality of bioconversion. Our results indicate that the quality of bioconversion may be controlled by implementing a predetermined airflow rate schedule.  相似文献   

17.
Effect of steam explosion on biodegradation of lignin in wheat straw   总被引:5,自引:1,他引:4  
The effect of steam explosion pretreatment on biodegradation of lignin in wheat straw was studied in this paper. Through experiments and analysis, 0.8MPa operation pressure and 1:20 wheat straw to water ratio are optimum for destroying lignin and the maximum of lignin loss rate is 19.94%. After steam explosion pretreatment, the wheat straw was retted by Trametes versicolor for 40 days. Biodegradation rate of lignin was tested and the maximum of 55.40% lignin loss rate was found on day 30. During the whole process of both steam explosion pretreatment and biodegradation, 75.34% lignin was degraded, without steam explosion the biodegradation of raw material the degradation rate of lignin was 31.23% only. FT-IR spectroscopy, TGA and SEM were used for further validating the results of biodegradation.  相似文献   

18.
19.
Pan X  Sano Y 《Bioresource technology》2005,96(11):1256-1263
Fractionation of wheat straw was investigated using an atmospheric acetic acid process. Under the typical conditions of 90% (v/v) aqueous AcOH, 4% H(2)SO(4) (w/w, on straw), ratio of liquor to straw (L/S) 10 (v/w), pulping temperature 105 degrees C, and pulping time 3h, wheat straw was fractionated to pulp (cellulose), lignin and monosaccharides mainly from hemicellulose with yields of approximately 50%, 15% and 35%, respectively. Acetic acid pulp from the straw had an acceptable strength for paper and could be bleached to a high brightness over 85% with a short bleaching sequence. Acetic acid pulp was also a potential feedstock for fuels and chemicals. The acetic acid process separated pentose and hexose in wheat straw to a large extent. Most of the pentose (xylan) was dissolved, whereas the hexose (glucan) remained in the pulp. Approximately 30% of carbohydrates in wheat straw were hydrolyzed to monosaccharides during acetic acid pulping, of which xylose accounted for 70% and glucose for 12%. The acetic acid lignin from wheat straw showed relatively lower molecular weight and fusibility, which made the lignin a promising raw material for many products, such as adhesive and molded products.  相似文献   

20.
White-rot fungal conversion of wheat straw to energy rich cattle feed   总被引:2,自引:0,他引:2  
In order to improve the digestibility and nutrient availability in rumen, wheat straw was subjected to solid state fermentation (SSF) with white-rot fungi (i.e. Pleurotus ostreatus and Trametes versicolor) and the fermented biomass (called myco-straw) was evaluated for biochemical, enzymatic and nutritional parameters. The fungal treatment after 30 days led to significant decrease (P < 0.05) in cell wall constituents viz, acid detergent fiber (ADF), neutral detergent fiber (NDF), hemicellulose, lignin and cellulose to the extent of 35.00, 38.88, 45.00, 37.48 and 37.86%, respectively in P. ostreatus fermented straw, while 30.04, 33.85, 39.90, 31.29 and 34.00%, respectively in T. versicolor fermented straw. However, maximum efficiency of fermentation in terms of low carbohydrate consumption per unit of lignin degradation, favoring cattle feed production was observed for P. ostreatus on the 10th day (17.12%) as compared with T. versicolor on the 30th day (16.91%). The myco-straw was found to contain significantly high (P < 0.05) crude protein (CP; 4.77% T. versicolor, 5.08% P. ostreatus) as compared to control straw (3.37%). Metabolizable energy (ME, MJ/kg DM), percent organic matter digestibility (OMD) and short chain fatty acids (SCFAs; mmol) production also increased considerably from control straw (4.40, 29.91 and 0.292) to a maximum up to P. ostreatus fermented straw (4.92, 33.39 and 0.376 on 20th day) and T. versicolor fermented straw (4.66, 31.74 and 0.334 on 10th day), respectively. Moreover, the myco-straw had lower organic carbon and was rich in nitrogen with lower C/N ratio as compared to control wheat straw. Results suggest that the fungal fermentation of wheat straw effectively improved CP content, OM digestibility, SCFAs production, ME value and simultaneously lowered the C/N ratio, thus showing potential for bioconversion of lignin rich wheat straw into high energy cattle feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号