首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stimulative effect of 1,25-dihydroxyvitamin D3 was tested on osteoblastic cells, clone MC3T3-E1, cultured in serum-free medium with 0.1% bovine serum albumin. This steroid increased alkaline phosphatase activity in a dose-related fashion. The steroid also stimulated dose-dependently collagen and non-collagen protein syntheses, their maximal effects being observed at 12 and 24 h, respectively. The incorporation of [3H]-proline into collagen or non-collagen protein in cells exposed to this steroid for 12 h was 2.9 or 1.9-fold over that of control cultures, respectively. These results strongly indicate the stimulative effects of 1,25-dihydroxyvitamin D3 on the differentiation of osteoblasts in vitro.  相似文献   

2.
The effects of prostaglandins (PGs) on the induction of alkaline phosphatase (ALP) were investigated in osteoblastic clone MC3T3-E1 cells cultured in serum-free medium. Prostaglandin E2 (PGE2) stimulated ALP activity in the cells in a dose-dependent fashion with a maximal effect which was about twice that in the control cells at concentrations of 100-500 ng/ml. Actinomycin D and cycloheximide inhibited the stimulative effect of PGE2 on ALP activity in the cells. PGE2-induced and native ALPs in the cells were of the same type as that in adult mouse calvaria, being heat-labile, L-homoarginine- and levamisole-sensitive, and L-phenylalanine-insensitive. Isobutyl methylxanthine (IBMX), a cAMP phosphodiesterase inhibitor, stimulated the inductive effect of PGE2 on ALP activity at 0.1 mM, at which concentration IBMX alone had little effect on the activity. PGE2 also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 100 ng/ml. PGE1, PGF1 alpha, and PGF2 alpha (primary PGs like PGE2) increased the activity. Our present results suggest that PGs stimulate the differentiation of osteoblasts and are involved in bone formation in vivo, as well as in bone resorption.  相似文献   

3.
The effect of prostaglandin E2 (PGE2) on osteoblastic cell proliferation was investigated using osteoblastic clone MC3T3-E1 cells cultured in serum-free medium. PGE2 at 2 micrograms/ml increased the number of the cells by 2 days after its addition. PGE2 raised the level of DNA synthesis in a dose-related fashion after a constant lag time, the maximal effect being at 2-10 micrograms/ml and the level about fourfold over that of the control at 36 hr after its addition. However, at low doses (below 0.2 microgram/ml), PGE2 rather depressed DNA synthesis. Isobutyl methylxanthine counteracted the stimulation of DNA synthesis by PGE2, and forskolin depressed the synthesis, which was inversely correlated with increasing intracellular cAMP content. These results indicate that an increase in cAMP content inhibits DNA synthesis. In addition, 2',5'-dideoxyadenosine did not negate the stimulatory effect of PGE2 on DNA synthesis, suggesting that PGE2 increases DNA synthesis, probably via a pathway different from the adenylate cyclase/cAMP system. Moreover, at a high dose, PGE2 stimulated both the production and degradation of cAMP; the elevation of cAMP content was rapidly depressed by the stimulated degradation system. Consequently, the stimulatory effect of PGE2 on DNA synthesis would be released from the inhibition by cAMP, resulting in an increase in DNA synthesis. Taken together with data from our previous reports, these results indicate that PGE2 enhances both the proliferation and differentiation of osteoblastic cells in vitro, which are probably mediated by two different second messengers dependent on the concentration of PGE2.  相似文献   

4.
The effects of prostaglandin E2(PGE2) on the degradation of collagen and non-collagenous peptides in clonal osteoblastic MC3T3-E1 cells were investigated by using highly sensitive assay methods for PZ-peptidase, collagenase-like peptidase (CL-peptidase), dipeptidyl-aminopeptidase (DAP), leucine aminopeptidase (LAP), and post-proline cleaving enzyme (PPCE). PGE2, at concentrations of 0.1 to 4.0 micrograms/ml, doubled the PZ-peptidase and CL-peptidase activities in the cells on 24 h culturing in a dose-dependent manner. PGE2, at a concentration of 2.0 micrograms/ml, enhanced the specific activities of PZ-peptidase, CL-peptidase, DAP, LAP, and PPCE for 75 h after the start of PGE2 stimulation. The time dependent changes in PZ-peptidase and CL-peptidase activities showed similar patterns, and 3- and 2-fold increases were seen after 48 h, respectively. The protein and DNA contents gradually increased after addition of PGE2. Since the PZ-peptidase and CL-peptidase, involved in degradation of collagen peptides, were significantly induced by PGE2 in comparison with LAP and PPCE, involved in the degradation of non-collagenous peptides, these results show that PGE2 specifically stimulates induction of collagen catabolizing enzymes in clonal osteoblasts.  相似文献   

5.
The effects of dehydroepiandrosterone 3-sulfate (DHAS) and 17 beta-estradiol (E2) on collagen and noncollagen protein syntheses by rabbit uterine cervical cells were studied, and their effects on latent collagenase synthesis were compared. DHAS (1 X 10(-6) M) stimulated the synthesis of latent collagenase and did not affect the cell number and [3H]thymidine incorporation into DNA, whereas E2 had no effect on collagenase synthesis. On the other hand, neither DHAS (1 X 10(-6) M) nor E2 (1 X 10(-10)-1 X 10(-6) M) showed effects on collagen and noncollagen protein syntheses. These results suggest that the stimulative effect of DHAS on cervical ripening is mediated mainly by the stimulation of collagen catabolism, and that E2 does not concern the changes in the concentration of collagen and noncollagen protein in uterine cervix of the rabbit during pregnancy at term.  相似文献   

6.
Prostaglandin E2 (PGE2, 5 ng/ml to 5 micrograms/ml) induced a dose-dependent increase in cAMP accumulation, inositol phosphates (IPs) accumulation, and cytoplasmic free Ca2+ ([Ca2+]i) in a clonal osteoblast-like cell line, MOB 3-4. In contrast, prostaglandin F2 alpha (PGF2 alpha, 5 ng/ml to 5 micrograms/ml) stimulated increases in IPs accumulation and [Ca2+]i without stimulating an increase in cAMP accumulation. Both PGE2 (greater than 0.5 micrograms/ml) and PGF2 alpha (greater than or equal to 5 micrograms/ml) increased cytoplasmic pH (pHi) from approximately 7.15 to 7.35 in BCECF-loaded cells. A tumor promotor, phorbol 12-myristate 13-acetate (PMA, 0.1-100 nM) also increased pHi without effect on phosphoinositide hydrolysis. Both PGE2-(5 micrograms/ml) and PMA- (100 nM) induced cytoplasmic alkalinization was inhibited by removal of extracellular Na+, or by pretreatment of the cells with amiloride (0.5 mM), an inhibitor of Na+/H+ exchange, or H-7 (100 microM), a nonspecific inhibitor of protein kinase C. Thus, MOB 3-4 cells appeared to possess PGE2 receptors and PGF2 alpha receptors: the former are coupled to adenylate cyclase and phospholipase C, and the latter are predominantly coupled to phospholipase C. Also the cells appeared to possess an amiloride-sensitive Na+/H+ exchange activity, which increases pHi in response to PGE2 and PGF2 alpha, as well as to PMA. Long-term (48 hr) exposure of the cells to PGE2 at a high concentration (5 micrograms/ml), but not to PGF2 alpha and PMA, decreased DNA synthesis in the serum-deficient medium. Thus, cytoplasmic alkalinization appeared insufficient for cell replication. At least in MOB 3-4 cells, the inhibitory effect of PGE2 on DNA synthesis may be due to the cAMP messenger system.  相似文献   

7.
We characterized the collagen-induced increase in cytosolic Ca2+ ([Ca2+]i) of bovine platelets loaded with the Ca2+ indicator Fura-PE3/AM. Collagen (10 micrograms/ml)-induced increase in [Ca2+]i was only partially inhibited by aspirin, a cyclooxygenase inhibitor, or adenosine 3'-phosphate 5'-phosphosulfate (A3P5PS, a P2Y1 receptor antagonist), while in human platelets it was almost completely suppressed by aspirin. Collagen-induced increase in [Ca2+]i of bovine platelets was inhibited by U73122 (0.3-5 microM), a phospholipase C inhibitor. Collagen (10 micrograms/ml) increased production of inositol 1,4,5-trisphosphate, which was prevented by pretreatment with U73122 (5 microM). Collagen (10 micrograms/ml) accelerated Mn2+ entry, since the rate of Fura-PE3 quenching by Mn2+ was enhanced by 13-fold following stimulation with collagen. U73122 inhibited the acceleration of Mn2+ entry induced by collagen. PGE1 (2.5 microM) partially inhibited the collagen (50 micrograms/ml)-induced increase in [Ca2+]i in bovine platelets but not in human platelets. The data suggest that collagen-induced Ca2+ mobilization in bovine platelets is mediated by phospholipase C. The Ca2+ mobilization in bovine platelets is different from that in human ones as to the dependency on arachidonic acid metabolites and sensitivity to PGE1.  相似文献   

8.
Fibroblasts can synthetize prostaglandins (particularly PGE2) "in vitro" but it still remains unclear what role they play in the regulation of fibroblast proliferation and collagen production. We report here the effect of PGE2 and indomethacin on collagen synthesis by cultured human dermal fibroblasts. PGE2 (range: 1-300 pmoles/ml) and indomethacin (range: 0.0025-1.0 micrograms/ml) did not significantly affect fibroblast collagen production, when added for 24 hours at 37 degrees C to the cultures, in comparison to controls (fibroblasts incubated for 24 hours at 37 degrees C in medium only). Prostaglandins probably modulate collagen synthesis, as described in a previous report, by means their effect on cell proliferation. It appears they do not affect the intracellular mechanism of collagen production.  相似文献   

9.
Transforming growth factor beta (TGF beta) and 1,25-dihydroxyvitamin D3 (1,25D3), when added simultaneously to a human osteosarcoma cell line, MG-63, induce alkaline phosphatase activity 40-70-fold over basal levels, 6-7-fold over 1,25D3 treatment alone, and 15-20-fold over TGF beta treatment alone. TGF beta and 1,25D3 synergistically increased alkaline phosphatase specific activity in both matrix vesicles and plasma membrane isolated from the cultures, but the specific activity was greater in and targeted to the matrix vesicle fraction. Inhibitor and cleavage studies proved that the enzymatic activity was liver/bone/kidney alkaline phosphatase. Preincubation of MG-63 cells with TGF beta for 30 min before addition of 1,25D3 was sufficient for maximal induction of enzyme activity. Messenger RNA for liver/bone/kidney alkaline phosphatase was increased 2.1-fold with TGF beta, 1.7-fold with 1,25D3, and 4.8-fold with the combination at 72 h. Human alkaline phosphatase protein as detected by radioimmunoassay was stimulated only 6.3-fold over control levels with the combination. This combination of factors was tested for their effect on production of three other osteoblast cell proteins: collagen type I, osteocalcin, and fibronectin. TGF beta inhibited 1,25D3-induced osteocalcin production, whereas both factors were additive for fibronectin and collagen type I production. TGF beta appears to modulate the differentiation effects of 1,25D3 on this human osteoblast-like cell and thereby retain the cell in a non-fully differentiated state.  相似文献   

10.
We examined the effects of transforming growth factor-beta (TGF-beta) on the production of collagen by cultures of human embryonic lung fibroblasts. TGF-beta at 0.1 ng/ml appeared to activate selectively extracellular collagen accumulation as compared with total protein production. A maximal effect inducing a 2-3-fold increase in collagen and total protein production occurred at a dose of 1.0 ng/ml in fibroblast cultures. TGF-beta had no effect on fibroblast proliferation after a 24- and 48-h exposure, including cultures that received a second dose after 24 h. Collagenase digestion of radiolabeled collagen derived from TGF-beta-treated and -untreated cultures revealed no differences in the extent of hydroxylation (37.3 versus 33.4%). TGF-beta increased the production of types I and III collagen without affecting the proportion of collagen types. Fibroblast cultures maintained in medium containing TGF-beta sustained an activated rate of collagen production of 5 nmol/ml/24 h over at least 72 h. We found that epidermal growth factor slightly enhanced TGF-beta-induced collagen formation, whereas TGF-beta increased the proliferative effect of epidermal growth factor. Taken together, these data indicate that collagen production and cell proliferation can be independently regulated and that TGF-beta may have a role in the resolution of tissue injury by stimulating fibroblast-derived collagen synthesis.  相似文献   

11.
Fibroblasts cultivated in three-dimensional tissue-like matrices are characterized by a slowed metabolism and a decrease of protein synthesis, unless they are submitted to physical tensions. We checked the effects of insulin like growth factor-I (IGF-I), known as a potent stimulator of mitogenesis and protein synthesis for many cell types, in various models of cultures: confluent monolayers, collagen lattices, non-retracting or retracting fibrin lattices. IGF-I (1-100 ng.ml-1) had no effect on cell divisions in lattice cultures. It was able to stimulate collagen lattice retraction when the medium was supplemented with low concentrations of serum. IGF-I at 10 or 100 ng.ml-1 stimulated collagen and non-collagen syntheses in all culture systems, but stimulation of collagen synthesis only began at the highest concentration (100 ng.ml-1) in retracted lattices. Northern blot and dot-blot analyses of mRNAs extracted from monolayer cultures of fibroblasts showed that IGF-I stimulated pro alpha 1(I) collagen synthesis at the pretranslational level. Cycloheximide (7.5 micrograms.ml-1) completely inhibited pro alpha 1(I) collagen gene expression induced by IGF-I. These results show that IGF-I is a potent stimulus for protein synthesis and collagen gene expression in monolayers and tridimensional cultures of fibroblasts, but that it exerts no mitogenic activity in tridimensional lattices. Synergistic associations of IGF-I with other growth factors will have to be found in order to reverse the quiescent status of fibroblasts in lattices.  相似文献   

12.
Granulosa cells isolated from immature Sprague-Dawley rat ovaries produce progesterone (31.7 pg/micrograms cell protein) in response to an acute FSH stimulus (5 micrograms/ml NIH-FSH-S11, 2 H). After culture for 48 h in the absence of hormones (control culture), progesterone production by the granulosa cells in response to FSH is significantly reduced (2.9 pg/micrograms cell protein). Cells cultured with prostaglandin E2 (PGE2, 1 microgram/ml) or dibutyryl-cAMP (dbcAMP, 1 mM) exhibited a discernibly greater steroidogenic response to FSH (12.5 and 53.4 pg/microgram cell protein, respectively) than that of control cultures. Therefore the presence of PGE2 or dbcAMP in the culture medium helps to maintain the steroidogenic capacity of granulosa cells in culture. It is probable that this capacity is maintained at a locus distal to the production of cAMP by FSH. Paradoxically, granulosa cells cultured with PGE2 produce less cAMP in response to FSH stimulation than cells in control cultures (15.9 vs. 250.3 fm/micrograms cell protein). This may be due to a suppressive effect of prior exposure to PGE2 on the subsequent activity of adenylate cyclase when the FSH is introduced and a concomitant elevation of phosphodiesterase activity.  相似文献   

13.
Human PHA-stimulated mononuclear cells produce a factor which inhibits synovial cell collagen and non-collagen protein synthesis, whereas it enhances hyaluronic acid (HA) production. Indomethacin (10(-4)-10(-6) M), a cyclo-oxygenase inhibitor, suppresses this effect, suggesting that the mechanism is prostaglandin-mediated. The active material, of apparent molecular weight 12 000-20 000, also displays the properties of the mononuclear cell factor (MCF) previously described by others, since its stimulates collagenase and PGE2 release by the cultured synovial cells. Furthermore, it co-purifies with interleukin 1 (IL 1) as shown by lymphocyte-activating factor activity. This strongly suggests that IL 1 could be responsible for some (or all) the effects observed on MCF-exposed synovial cells. From these data, we deduce the possibility that mononuclear cells may participate in limiting synovial collagen deposition in rheumatoid arthritis.  相似文献   

14.
Using HSDM1 C1 cell line derived from the mouse fibrosarcoma which synthesizes and secretes prostaglandin (PG) E2, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator of many tissues, and its effect on PGE2 production by cultured tumor cells were studied. HSDM1 C1 cell line possessed specific, high-affinity receptors for EGF: Kd (5.5 X 10(-10 M) and binding capacity (17,650 sites/cell). EGF significantly stimulated PGE2 production in HSDM1 C1 line cultured in serum-free medium for 24 h in a dose-dependent manner; a 2.5-fold increase over control was induced by as little as 0.1 ng/ml and the maximal effect (3.5-fold increase) by 1 ng/ml. Its stimulatory effect on PGE2 production was completely blocked by indomethacin, an inhibitor of PG biosynthesis. These data suggest that EGF may be involved in modulation of synthesis and/or secretion of PGE2, a potent bone-resorbing factor, by the tumors which may partly contribute to hypercalcemia in certain types of neoplasms.  相似文献   

15.
Weight loss often results from various experimental conditions including scurvy in guinea pigs, where we showed that decreased collagen synthesis was directly related to weight loss, rather than to defective proline hydroxylation (Chojkier, M., Spanheimer, R., and Peterkofsky, B. (1983) J. Clin. Invest. 72, 826-835). In the study described here, this effect was reproduced by acutely fasting normal guinea pigs receiving vitamin C, as determined by measuring collagen and non-collagen protein production after labeling tissues in vitro with [3H]proline. Collagen production (dpm/microgram of DNA) decreased soon after initiating fasting and by 96 h it had reached levels 8-12% of control values. Effects on non-collagen protein were much less severe, so that the percentage of collagen synthesis relative to total protein synthesis was 20-25% of control values after a 96-h fast. These effects were not due to changes in the specific radioactivity of free proline. Refeeding reversed the effects on non-collagen protein production within 24 h, but collagen production did not return to normal until 96 h. The effect of fasting on collagen production was independent of age, sex, ascorbate status, species of animal, and type of connective tissue and also was seen with in vivo labeling. Pulse-chase experiments and analysis of labeled and pre-existing proteins by gel electrophoresis showed no evidence of increased collagen degradation as a result of fasting. Procollagen mRNA was decreased in tissues of fasted animals as determined by cell-free translation and dot-blot hybridization with cDNA probes. In contrast, there was no decrease in translatable mRNAs for non-collagen proteins. These results suggest that loss of nutritional factors other than vitamin C lead to a rapid, specific decrease in collagen synthesis mainly through modulation of mRNA levels.  相似文献   

16.
17.
[23 (S), 25 (R)]-1 alpha,25-Dihydroxyvitamin D3-26,23-lactone [( 23 (S),25 (R)]-1 alpha,25-(OH) 2D3-26,23-lactone) increased dose-dependently alkaline phosphatase activity in osteoblastic cells, clone MC3T3-E1, in medium containing 0.1% bovine serum albumin. The maximal stimulated enzyme activity per mg protein was 1.6-fold over that of control cultures at 250 pg/ml. The metabolite also increased collagen synthesis in a dose-related fashion. On the other hand, [23 (S),25 (R)]-1 alpha,25-(OH)2D3-26,23-lactone decreased slightly but significantly 45Ca mobilization, and blocked the resorptive action of 1 alpha,25-dihydroxyvitamin D3 but not that of parathyroid hormone, in mouse calvaria in organ culture. These results indicate that [23 (S),25 (R)]-1 alpha, 25-(OH)2D3-26,23-lactone stimulates the differentiation of osteoblasts and inhibits bone resorption in vitro.  相似文献   

18.
We investigated the effects that the combination of IL-1 alpha and transforming growth factor-beta (TGF-beta) had on PGE2 production in a murine clonal osteoblastic cell line MC3T3-E1 and primary rat calvarial osteoblast-like cells. In serum-supplemented medium, IL-1 alpha was a potent stimulator of PGE2 production in MC3T3-E1 cells (50-fold increase with 0.1 ng/ml). TGF-beta (10 ng/ml) had only a small effect alone and no additional effect on IL-1 alpha-induced responses. In serum-deprived MC3T3-E1 cells, PGE2 responses to IL-1 alpha were either absent or markedly reduced. TGF-beta alone had small effects. However, simultaneous addition of TGF-beta with IL-1 alpha to MC3T3-E1 cells partially restored the ability of IL-1 alpha to generate a PGE2 response (10-fold increase in PGE2 with 0.1 ng/ml of both IL-1 alpha and TGF-beta). As with MC3T3-E1 cells, serum-deprived primary fetal rat calvarial osteoblastic cells also did not respond to IL-1 alpha, unless TGF-beta was present in the medium (sixfold increase in PGE2 with 0.1 ng/ml IL-1 alpha and 10 ng/ml TGF-beta). The synergistic effect of TGF-beta and IL-1 alpha was specific for PGE2 responses, because these factors did not synergistically affect cell proliferation, collagen and noncollagen protein synthesis, or alkaline phosphatase activity. The observed synergy was not associated with changes in the steady state cyclooxygenase (PGH synthase) mRNA levels. However, it did correlate with increased release of [3H]arachidonic acid from prelabeled serum-depleted MC3T3-E1 cells. Hence, the synergistic interactions of IL-1 alpha and TGF-beta on PGE2 appear to occur through an increase in the release of arachidonic acid substrate from phospholipid pools. These effects may be important for both normal bone turnover and the responses of bone to inflammatory and immune stimuli.  相似文献   

19.
Iron transferrin has been found to induce a mean 10-fold increase in the activity of protein kinase C in CCRF-CEM cells. This increase was not detectable up to 45 min after treatment of cells with iron transferrin, although after 60 min, a maximal increase in enzyme activity was observed. Similarly, iron transferrin at concentrations of 0.1-0.5 microgram/ml did not alter protein kinase C activity, while concentrations of iron transferrin of 1-100 micrograms/ml induced a maximal increase in enzyme activity. Apotransferrin and iron in the form of ferric citrate, as well as complexes of transferrin with copper, nickel, zinc, manganese, and cobalt did not increase protein kinase C activity. Additionally, CCRF-CEM cells pretreated with either actinomycin D or cycloheximide and then incubated with iron transferrin did not exhibit increased enzyme activity. Treatment with iron transferrin was found to have no effect on protein kinase C activity in normal human peripheral blood lymphocytes and in HL60, Daudi, and U937 cells. However, normal lymphocytes stimulated with phytohemagglutinin for 48 hr exhibited a 2-fold increase in protein kinase C activity following treatment with iron transferrin. These results indicate a specific effect of iron transferrin on protein kinase C activity in CCRF-CEM cells and in mitogen-stimulated human lymphocytes that may occur through increased synthesis of the enzyme.  相似文献   

20.
Previous studies showed that phorbol esters and thyrotropin-releasing hormone (TRH) stimulated phosphatidylcholine synthesis via protein kinase C in GH3 pituitary cells [Kolesnick (1987) J. Biol. Chem. 262, 14525-14530]. In contrast, 1,2-diacylglycerol-stimulated phosphatidylcholine synthesis appeared independent of protein kinase C. The present studies compare phosphatidylcholine synthesis stimulated by these agents with inhibition via the cyclic AMP system. The potent phorbol ester phorbol 12-myristate 13-acetate (PMA, 10 nM) increased [32P]Pi incorporation into phosphatidylcholine at 30 min to 159 +/- 6% of control. The adenylate cyclase activator cholera toxin (CT; 10 nM) and the cyclic AMP analogue dibutyryl cyclic AMP (1 mM) abolished this effect. CT similarly abolished TRH-induced phosphatidylcholine, but not phosphatidylinositol, synthesis. This is the first report of inhibiton of receptor-mediated phosphatidylcholine synthesis by the cyclic AMP system. The 1,2-diacylglycerol 1,2-dioctanoylglycerol (diC8) also stimulated concentration-dependent phosphatidylcholine synthesis. DiC8 (3 micrograms/ml) induced an effect quantitatively similar to that of maximal concentrations of PMA and TRH, whereas a maximal diC8 concentration (30 micrograms/ml) stimulated an effect 3-4-fold greater than these other agents. CT decreased the effect of diC8 (3 micrograms/ml) by 80%. Higher diC8 concentrations overcame the CT inhibition. Similar results were obtained with dibutyryl cyclic AMP. Additional differences were found between low and high concentrations of diC8. Low concentrations of diC8 failed to induce additive phosphatidylcholine synthesis with maximal concentrations of PMA, whereas high concentrations were additive. Hence, low concentrations of 1,2-diacylglycerols appear to be regulated similarly to phorbol esters, and higher concentrations appear to act via a pathway unavailable to phorbol esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号