首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamines are essential compounds for growth and development in plants. An attempt has been made to find out the endogenous polyamine profiles in various parts and during the ontogeny of fruit formation of two commercially important Coffea species viz., arabica and canephora. Putrescine (Put), spermine (Spm) and spermidine (Spd) are the predominant polyamines during the ontogeny of fruit and their level increased with the advancement of fruit development. However, in the initial stages of flower and fruit development Spm levels were found to be decreased. Elevated levels of major polyamines Put, Spd, and Spm were observed in zygotic embryos than in somatic embryos. Along with this cadavarine (Cad) and other biogenic amines viz., tyramine (Tyr) and tryptamine (Try) were also found during the ontogeny of fruit in C. canephora. In this study the enodogenous polyamine profiles in coffee tissues and beans have been addressed.  相似文献   

2.
We analyzed molecularly and biochemically a series of transgenic rice lines expressing the oat adc (arginine decarboxylase) cDNA under the control of the constitutive maize ubiquitin 1 promoter. We established baseline biochemical parameters to elucidate the role of polyamines (PAs) during morphogenesis. We measured mRNA levels, ADC enzyme activity and cellular PAs in dedifferentiated callus. Polyamine levels were also quantified in two subsequent developmental stages – regenerating tissue and differentiated shoots. We observed significant (P<0.05) differences in the levels of individual PAs at the three developmental stages. The amounts of putrescine (Put) and spermidine (Spd) in dedifferentiated transgenic callus were lower than those in the wild type or in hpt (hygromycin resistant)-controls, whereas the amount of spermine (Spm) was increased up to two-fold. In regenerating tissue, this trend was reversed, with significantly higher levels of Put and Spd (P<0.05), and lower levels of Spm (P<0.05) compared to non-transformed or hpt-control tissues at the same developmental stage. In differentiated shoots, there was a general increase in PA levels, with significant increases in Put, Spd, and Spm (P<0.05); on occasion reaching six times the level observed in wild type and hpt-control tissues. These results contrast those we reported previously using the weaker CaMV 35S promoter driving adc expression. mRNA measurements and ADC enzyme activity were consistently higher (P<0.01) in all tissues expressing pUbiadcs compared to equivalent tissues engineered with 35Sadc. Our findings are consistent with a threshold model which postulates that high adc expression leading to production of Put above a basal level is necessary to generate a big enough metabolic pool to trigger PA flux through the pathway leading to an increase in the concentration of Spd and Spm. This can be best accomplished by a strong constitutive promoter driving adc. We discuss our results in the context of flux through the PA pathway and its impact on morphogenesis.  相似文献   

3.
The influence of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO) activities and polyamines (PAs), proline contents in water hyacinth leaves under Mercury (Hg) stress was investigated after 6 days treatment. The results showed that free putrescine (Put) content increased, the contents of free spermidine (Spd) and spermine (Spm) and the (Spd + Spm)/Put ratio in water hyacinth leaves decreased significantly with the increase of the Hg concentrations. Hg stress also disturbed the activities of ADC, ODC and PAO and caused changes on proline content. Compared to the Hg-treatment only, exogenous Spd (0.1 mM) significantly reduced the accumulation of free Put, increased the contents of free Spd and Spm and the ratio of (Spd + Spm)/Put in water hyacinth leaves. Furthermore, exogenous Spd enhanced the activities of ADC, ODC and PAO and significantly increased proline content. The PS-conjugated PAs and PIS-bound PAs changed in the same trend as free PAs. These results suggest that exogenous Spd can alleviate the metabolic disturbance of polyamines caused by Hg in water hyacinth leaves.  相似文献   

4.
5.
Changes in polyamine content during in vivo maturation and in vitro culture of maize (Zea mays L.) pollen were studied. The endogenous content of free, conjugated and bound polyamines was analyzed during 30 days of pollen evolution, in both developmental pathways (microsporogenesis and androgenesis). The induction of androgenesis from cold-pretreated uninucleate pollen results, in most of cases, in a lower total polyamine content than that of the in vivo uninucleate pollen. These differences indicate that polyamine metabolism is altered during the induction of androgenesis, and this could be a consequence of increased polyamine assimilation. In general, pollen stages that involve cell division (tetrades, pre-anthesis pollen and four-day cultured pollen) are characterized by a predominance of free Spd. The increase of Spd and Spm in 15-day cultured pollen, when the first embryoids are formed, outline the possible implication of these polyamines in embryogenetic processes. Furthermore, these findings may contribute to the improvement of maize androgenesis yield, especially in recalcitrant genotypes, by the exogenous application of polyamines or polyamine-inhibitors to the culture medium.Abbreviations PAs polyamines - Put putrescine - Spd spermidine - Spm spermine - S free polyamine fraction - SH conjugated polyamine fraction - PH bound polyamine fraction  相似文献   

6.
Polyamines play an important role in the plant response to adverse environmental conditions including salt and osmotic stresses. In this investigation, the responses of polyamines to salt-induced oxidative stress were studied in callus cultures and plantlets in Virginia pine (Pinus virginiana Mill.). Our results demonstrated that polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation. Among different polyamines used in this study, putrescine (Put) is more effective in increasing the activities of ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD), reducing the activities of acid phosphatase and V-type H+-ATPase, and decreasing lipid peroxidation in Virginia pine, compared to both spermidine (Spd) and spermine (Spm). When 2.1 mM Put, Spd, and Spm were separately added to the medium, higher diamine oxidase (DAO) and polyamine oxidase (PAO) activities were observed in callus cultures and plantlets, compared to the concentrations of 0.7 and 1.4 mM. The activities of these two enzymes produce hydrogen peroxide (H2O2), which may act in structural defense as a signal molecule and decreasing the protection of polyamines against salt-induced oxidative damage in Virginia pine.  相似文献   

7.
8.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

9.
Changes in the levels of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) and polyamines were simultaneously investigated during the early phases of alfalfa somatic embryogenesis. These included the period of induction and subculture of callus, and 3- and 7-day suspension cultures for the induction of somatic embryogenesis. The polyamines contained in the embryogenic callus were found to include putrescine (Put), spermidine (Spd) and spermine (Spm), but the level of Spm was much less than that of Put and Spd. There was a dramatic increase in MACC after induction of embryogenesis, and ACC levels were lower in somatic embryos than in embryogenic callus. Induction of embryogenesis for 3 days increased the levels of ACC and polyamines to a maximum level, and these then reduced as the embryogenesis proceeded. The ratios of Put/Spd and ACC/MACC were decreased during the induction. This indicated that both high levels of ACC and polyamines might be a prerequisite for early differentiation during the induction of the embryogenesis. Thus, there appears not to be competition between polyamine biosynthesis and ethylene biosynthesis at least during the induction of somatic embryogenesis, because both the polyamines and ACC were simultaneously increased during the induction period. Conversion of ACC into MACC and the maintenance of a relatively high level of polyamines, especially Spd, appear to be important for further development of the embryos.
When aminooxylvinylglycine (AOA) was added at the initiation of the callus subculture, it had no significant effect on the callus growth, the ethylene production and ACC level of the callus. However, AOA increased the numbers of the embryos accompanying an increase in Spd level and S-adenosylmethionine decarboxylase (SAMDC) activity. Thus, the AOA effect could be associated with Spd increase rather than with the effect of ethylene biosynthesis.  相似文献   

10.
Tang W  Newton RJ 《Plant cell reports》2005,24(10):581-589
Polyamines have been demonstrated to play an important role in adventitious root formation and development in plants. Here, we present a detailed analysis of influence of exogenously added polyamines on adventitious root development and its relationship to cold tolerance in Virginia pine (Pinus virginia Mill.). Our results demonstrated that polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) at 0.001 mM improve rooting frequency and promote root elongation. Put, Spd, and Spm at 0.01–1 mM decrease rooting frequency and reduce root elongation root elongation. Measurements of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) activities showed that higher DAO and PAO enzyme activities were obtained when high concentrations of polyamines were applied and when plantlets were treated for 5–7 week at 4°C and 16°C. Survival rate of plantlets increased with the treatment of polyamines at low temperature. Polyamines increased mitotic index of cells in root tips of regenerated plantlet cultured on medium containing 0.001 μM Put, Spd, or Spm, but did not increase mitotic index in tissues of needle tips of the same plantlets. These results demonstrated that polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine plantlets.  相似文献   

11.
A new assay for the evaluation of spermidine (Spd) synthase activity was developed. It involves a coupled reaction and avoids the use of decarboxylated S-adenosylmethionine, which is unstable and not easily available. This assay was applied to assess changes in enzyme activity in oat leaves subjected to osmotic stress in the dark. The results indicate that osmotically-induced putrescine (Put) accumulation in cereals results not only from the activation of the arginine decarboxylase pathway, but also from the inhibition of the activity of Spd synthase, the enzyme which catalyzes the transformation of Put to Spd. Other possibilities which could contribute to the decline of Spd and spermine levels under osmotic stress are also discussed.Abbreviations ADC arginine decarboxylase - Dap diaminopropane - DFMA -difluoromethylarginine - MGBG methylglyoxal-bis-guanylhydrazone - MTA 5-deoxy-5-methylthioadenosine - ODC ornithine decarboxylase - PA polyamines - PAO polyamine oxidase - PCA perchloric acid - PLP pyridoxal phosphate - Put putrescine - SAM S-adenosylmethionine - dSAM decarboxylated S-adenosylmethionine - SAMDC S-adenosylmethionine decarboxylase - Spd spermidine - Spm spermine  相似文献   

12.
The effects of the putrescine analogue 1-aminooxy-3-aminopropane on fungal polyamine metabolism were evaluated using Sclerotinia sclerotiorum as an experimental model. The compound inhibited ornithine decarboxylase, spermidine synthase, and S -adenosyl-methionine decarboxylase in mycelial extracts. Addition of 1-aminooxy-3-aminopropane at 1 mM to the culture medium did not reduce mycelial growth and caused a 29% decrease in free spermidine and a two-fold increase in free spermine. When added 4.5 h before the determination of ornithine decarboxylase, 1-aminooxy-3-aminopropane reduced in vivo activity of this enzyme by 40–50%. When added 48 h before the determination, 1-aminooxy-3-aminopropane at 0.01 and 0.1 mM caused a slight increase of in vivo ornithine decarboxylase activity, while it had no effect at 1 mM. Comparison of the action of 1-aminooxy-3-aminopropane with that of other inhibitors of polyamine biosynthesis suggested that its effects on in vivo ornithine decarboxylase activity resulted from a balance between direct inhibition of enzyme activity and indirect stimulation of enzyme synthesis and/or activity mediated by the decrease in spermidine levels, which in turn was due to inhibition of spermidine synthase and S -adenosyl-methionine decarboxylase. The potential of 1-aminooxy-3-aminopropane as a tool for studies on fungal polyamine metabolism and for the control of plant diseases of fungal origin is discussed.Abbreviations AdoMetDC S-Adenosyl-methionine decarboxylase - DFMO -Difluoromethylornithine - MGBG Methylglyoxal bis-[guanyl hydrazone] - ODC Ornithine decarboxylase  相似文献   

13.
Arginine decarboxylase (ADC), ornithine decarboxylase (ODC), diamine oxydase (DAO) free amine and conjugated amine titers were estimated in leaf explants of Chrysanthemum morifolium Ramat. var. Spinder cultivated in vitro in relation to hormone treatment. Addition of benzyladenine (BA) to a basal medium caused the formation of buds on the explants. BA plus 2,4 dichlorophenoxyacetic acid (2,4 D) caused callus formation and proliferation. Formation of roots was obtained by addition of indolylacetic acid (IAA). Arginine decarboxylase (ADC) ornithine decarboxylase (ODC) and diamine oxidase (DAO) activities increased during the first days of culture when cell multiplication was rapid, followed by a sharp decline as the rate of cell division decreased and differentiation took place. DAO activities increased rapidly in proliferating and growing organs and decreased during maturity. This increase was concomitant with ADC and ODC activities and polyamine content (free and conjugated polyamines). The biosynthesis and oxidation of polyamines which occurred simultaneously in physiological states of intense metabolism such as cell division or organ formation were directly correlated. In callus cultures DAO activity was blocked throughout development and regulated neither the cellular levels of polyamines nor polyamine conjugates. Levels of polyamine conjugates were high in callus cultures throughout development. In foliar explants cultivated on a medium promoting callus, inhibition of ODC activity by DFMO (-DL-difluoromethylornithine, a specific enzyme-activated ODC inhibitor) resulting in an amide deficiency facilated the expression of differentiated cell function; substantial activation of DAO was observed until the emergence of the buds. On a medium promoting bud formation, -OH ethylhydrazine (DAO inhibitor) promoted callus formation without differentiation. In this system DAO activity was blocked and there were high levels of polyamines, especially polyamine conjugates, throughout the culture period. The relationship among free and conjugated polyamines related biosynthetic enzyme activities, DAO activities, cell division and organ formation is discussed.Abbreviations ADC = arginine decarboxylase - ODC = ornithine decarboxylase - DOA = diamine oxidase - DFMA = -DL-difluoromethylarginine - DFMO = -DL-difluoromethylornithine - Put = putrescine  相似文献   

14.
In order to determine the impact of polyamines on the yield-related parameters of rice (Oryza sativa L.) exposed to NaCl, the plants belonging to a salt-sensitive cultivar I Kong Pao were maintained from the young seedling stage until harvest on nutrient solutions containing 0 or 30 mM NaCl in the presence or absence of 10 μM putrescine (Put), 10 μM spermidine (Spd) or 10 μM spermine (Spm). Exogenous Put and to a lesser extent exogenous Spd improved growth and yield of salt-treated plants in relation to an increase in K+/Na+ ratio of shoots and roots as compared to plants exposed to NaCl in the absence of exogenous polyamines. Exogenous Put also improved the net CO2 assimilation, at least partly as a consequence of an increase in the stomatal conductance. Yield increase of salt-treated plants exposed to Put was related to an improvement of floral morphogenesis leading to a higher number of fertile tillers per plant and a higher number of spikelets per panicle. Putrescine also improved the pollen viability in salt-treated plants, allowing a higher seed set and thus a higher grain yield per plant. Although polyamines accumulated in the shoots to some extent in response to exogenous application, neither Put nor Spd accumulated in the seeds. In contrast, Spm did not afford any protection of salt-treated plants but was translocated to the seeds during maturation. Seeds with a high internal Spm concentration exhibited delayed germination in the presence of NaCl. These data are discussed in relation to the implication of polyamine in the metabolism and physiology of salt-treated plants.  相似文献   

15.
Summary Eggplant (Solanum melongena L. cv. Violetta lunga 2) cotyledon expiants grown on hormone-free medium (controls) or on medium containing either naphthaleneacetic acid alone (root forming) or in combination with zeatin riboside (shoot forming) showed minor differences in free polyamine titres during culture. In contrast, conjugated polyamines (particularly those in the trichloroacetic acid-soluble fraction) accumulated only in hormonetreated explants, but not in controls. The extent and the temporal changes in soluble-conjugate levels differed between root-forming and shoot-forming expiants; in the former, accumulation began earlier (within 1 day of culture) and reached the highest levels. In both organogenic programmes, maximum conjugate accumulation occurred just before and during organ emergence. Adventitious roots and shoots were formed along the cut surfaces. The regions closest to these (borders) displayed a significantly higher ratio of conjugated to free spermidine and/or putrescine than the nonorganogenic regions (centres) of the explant. Ornithine decarboxylase activity was higher than arginine decarboxylase activity both in control and hormone-treated explants. However, both activities increased markedly on day 2 of culture in the presence of hormones. Thereafter ornithine decarboxylase activity remained high in shoot-forming explants, but not in root-forming ones. Putrescine oxidising activity was also enhanced by exogenously supplied hormones starting from day 4 of culture. This activity remained high up to day 12 in the presence of auxin plus cytokinin, whereas it peaked on day 6 in auxin-treated explants. Spermidine oxidising activity was the only enzyme activity which was consistently higher in controls than in hormone-treated tissue. Differences between the two organogenic programmes with respect to temporal changes in polyamine content, and putrescine biosynthetic and oxidative activities are discussed in relation to the timing of organ formation. The latter was monitored both histologically and macroscopically.Abbreviations PA polyamine - Put putrescine - Spd spermidine - Spm spermine - NAA naphthaleneacetic acid - ZR zeatin riboside - TCA trichloroacetic acid - ODC ornithine decarboxylase - ADC arginine decarboxylase  相似文献   

16.
Changes in polyamines (PAs) in cells and cultivation media of alfalfa (Medicago sativa L.) and tobacco bright yellow 2 (BY-2) (Nicotiana tabacum L.) cell suspension cultures were studied over their growth cycles. The total content of PAs (both free and conjugated forms) was nearly 10 times higher in alfalfa, with high level of free putrescine (Put) (in exponential growth phase it represented about 65-73% of the intracellular Put pool). In contrast, the high content of soluble Put conjugates was found in tobacco cells (in exponential phase about 70% of the intracellular Put). Marked differences occurred in the amount of PAs excreted into the cultivation medium: alfalfa cells excreted at the first day after inoculation 2117.0, 230.5, 29.0 and 88.0 nmol g(-1) of cell fresh weight (FW) of Put, spermidine (Spd), spermine (Spm) and cadaverine (Cad), respectively, while at the same time tobacco cells excreted only small amount of Put and Spd (12.7 and 2.4 nmol g(-1) FW, respectively). On day 1 the amounts of Put, Spd, Spm and Cad excreted by alfalfa cells represented 21, 38, 12 and 15% of the total pool (intra- plus extra-cellular contents) of Put, Spd, Spm and Cad, respectively. In the course of lag-phase and the beginning of exponential phase the relative contents of extracellular PAs continually decreased (with the exception of Cad). On day 10, the extracellular Put, Spd, Spm and Cad still represented 11.3, 10.9, 2.1 and 27% of their total pools. The extracellular PAs in tobacco cells represented from day 3 only 0.1% from their total pools. The possible role of PA excretion into the cultivation medium in maintenance of intracellular PA contents in the cells of the two cell culture systems, differing markedly in growth rate and PA metabolism is discussed.  相似文献   

17.
Distribution of biogenic amines—the diamine putrescine (Put), triamine spermidine (Spd), and tetraamine spermine (Spm)—differs between species with Put and Spd being particularly abundant and Spm the least abundant in plant cells. These amines are important for cell viability and their intracellular levels are tightly regulated, which have made it difficult to characterize individual effects of Put, Spd and Spm on plant growth and developmental processes. The recent transgenic intervention and mutational genetics have made it possible to stably alter levels of naturally occurring polyamines and study their biological effects. We bring together an analysis of certain metabolic changes, particularly in amino acids, to infer the responsive regulation brought about by increased diamine or polyamine levels in actively growing poplar cell cultures (transformed with mouse ornithine decarboxylase gene to accumulate high Put levels) and ripening tomato pericarp (transformed with yeast S-adenosylmethionine decarboxylase gene to accumulate high Spd and Spm levels at the cost of Put). Our analysis indicates that increased Put has little effect on increasing the levels of Spd and Spm, while Spd and Spm levels are inter-dependent. Further, Put levels were positively associated with Ala (α and β), Ile and GABA and negatively correlated with Gln and Glu in both actively growing poplar cell cultures and non-dividing tomato pericarp tissue. Most amino acids showed positive correlations with Spd and Spm levels in actively growing cells. Collectively these results suggest that Put is a negative regulator while Spd–Spm are positive regulators of cellular amino acid metabolism.  相似文献   

18.
In order to gain information on the putative involvement of polyamines (PAs) in the response of rice cells to salinity, mature embryo-derived calli issued from the salt-sensitive cultivar I Kong Pao were exposed for 3 months to the simultaneous presence of NaCl (0, 150 and 300 mM) and exogenous polyamines (putrescine (Put): 1 and 10 mM; spermidine (Spd): 1 and 10 mM; spermine (Spm): 1 mM). Callus growth, endogenous PAs, Na+, K+ and Cl concentrations were quantified and analysed in relation to cell viability based on 2,3,5-triphenytetrazolium chloride (TTC) reduction. All exogenous PAs were efficiently absorbed from the external medium. Exogenous Put 1 mM clearly stimulated growth of salt-stressed calli in relation to a decrease in both Na+ and Cl accumulation. In contrast, Spd 10 mM and Spm 1 mM exacerbated the deleterious impact of NaCl on callus growth and induced a decrease in K+ concentration. While Put helped in the maintenance of cell viability, Spd 10 mM and Spm 1 mM decreased cell viability, mainly in relation to an inhibition of the alternative respiratory pathway. It is proposed that Put may assume positive functions in salt stress resistance in rice.  相似文献   

19.
氯化钠胁迫对嫁接黄瓜叶片多胺含量的影响   总被引:3,自引:0,他引:3  
以日本耐盐品种‘帝王新土佐’南瓜为砧木,以’新泰密刺’黄瓜为接穗,在100 mmol·L-1 NaCl胁迫下,对黄瓜嫁接和自根植株不同时期叶片中不同形态多胺含量的变化进行了研究.结果表明:NaCl胁迫下黄瓜嫁接植株游离态腐胺(Put)含量在胁迫2 d时与自根植株无显著差异,其余时间均显著高于自根植株;游离态亚精胺(Spd)和游离态精胺(Spm)含量在整个胁迫期间均显著高于自根植株;游离态多胺总量(PAs)在胁迫第4天出现峰值;嫁接植株游离态Put/PAs值在胁迫4 d时与自根植株无显著差异,其余胁迫时间均显著低于自根植株,而(Spd+Spm)/Put值在整个胁迫期间均显著高于自根植株;嫁接植株结合态和束缚态Put、Spd和Spm含量在整个胁迫期间均显著高于自根植株,结合态和束缚态PAs在胁迫第6天出现峰值;结合态多胺的Put/PAs值和(Spd+Spm)/Put值变化趋势与游离态多胺一致;嫁接植株束缚态Put/PAs值在胁迫6 d时与自根植株无显著差异,其余时间均显著低于自根植株,而(Spd+Spm)/Put值在整个胁迫期间均显著高于自根植株.表明黄瓜嫁接植株表现出较强的耐盐特征.  相似文献   

20.
Effects of exogenous spermidine (Spd) on the reactive oxygen species level and polyamine metabolism against copper (Cu) stress in Alternanthera philoxeroides (Mart.) Griseb leaves were investigated. Cu treatment induced a marked accumulation of Cu and enhanced contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the generation rate of O2 ·−. It also significantly increased putrescine (Put) levels but lowered spermidine (Spd) and spermine (Spm) levels. The activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and polyamine oxidase (PAO) were all elevated with the increase of Cu concentration. However, application of exogenous Spd effectively decreased H2O2 content and the generation rate of O2 ·−, prevented Cu-induced lipid peroxidation and reduced Cu accumulation. Moreover, it declined level of endogenous Put and increased levels of Spd and Spm. Activities of ADC, ODC and PAO were all inhibited by exogenous Spd. The results indicated that application of exogenous Spd could enhance the tolerance of A. philoxeroides to Cu stress by reducing the reactive oxygen level and balancing polyamine metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号