首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. A. Lie 《Plant and Soil》1969,30(3):391-404
Summary Nodulation of pea and broad bean plants grown in the light was found to be reduced when the roots were exposed to far-red light for 5–15 minutes daily during 5 consecutive days following inoculation with nodule bacteria. Similar results were obtained following a single exposure to far-red light during a period of 15 minutes at the 3rd or 4th day after inoculation. When the roots were exposed to far-red light either before inoculation or during the first two days afterwards there were either no effects or only slight effects on nodulation The inhibitory effect of far-red light on nodulation was partly reduced by subsequent exposure to red light, provided that the same part of the plant was exposed to both red and far-red light,viz either the root or the shoot. When different parts of the plant were exposed to red and far-red light respectively, there was no interaction between the two kinds of light on nodulation. Plants whose roots were exposed to far-red light did not subsequently show stem elongation.Nodules were found to develop on the roots of pea plants grown in the dark, provided that the plants were kept at or below 22°C. At 25°C nodulation was almost absent. Nodulation was decreased by addition of kinetin and IAA. In contrast to plants grown in the light pea plants grown in the dark, inoculated with either an effective or ineffective strain of Rhizobium, developed equal numbers of nodules. Exposure to red light slightly increased the percentage of nodulated plants but decreased the number of nodules per plant. Exposure to far-red light slightly decreased both the percentage of nodulated plants and the number of nodules per plant. The effect of far-red light was counteracted by red light andvice versa.  相似文献   

2.
Regulation of nodulation in Alnus incana-Frankia symbiosis   总被引:1,自引:0,他引:1  
We have studied regulation of nodulation in Alnus incana (L.) Moench using double inoculations in plastic pouches and a slide technique to observe root hair deformation. Initially, the distribution of nodules between main and lateral roots appeared quite constant, independent of the concentration of inoculum (1 to 250 μg of crushed nodules plant−1). Susceptibility to infection after the second inoculation was restricted to lateral roots after the initial infections developed. When pre-existing nodules were excised before the second inoculation, subsequent nodules appeared to arise where infections had arrested at stages earlier than actual nodule emergence. We observed that root hairs formed postinoculation were very crowded and short with a pronounced deformation. No nodules were found later on this region of the root, suggesting a loss of susceptibility in this region. Split-root experiments with delays between inoculation of the first and second side of the root system showed irreversible, systemic inhibition of nodulation on the second side starting between 3 and 6 days after the inoculation of the first side. Only when compatible, infective strains were used in the first inoculation, was nodule formation inhibited after the second inoculation. We conclude that autoregulation of nodulation operates in Alnus incana and on a time scale similar to what is found in some legumes.  相似文献   

3.
Root cells of four common legumes were found to remain susceptible to nodulation by rhizobia for only a short period of time. Delayed inoculation experiments conducted with these legume hosts indicated that the initially susceptible region of the root became progressively less susceptible if inoculations were delayed by a few hours. Profiles of the frequency of nodule formation relative to marks indicating the regions of root and root hair development at the time of inoculation indicated that nodulation of Vigna sinensis (L.) Endl. cv California Black Eye and Medicago sativa L. cvs Moapa and Vernal roots was inhibited just below the region that was most susceptible at the time of inoculation. This result suggests the existence of a fast-acting regulatory mechanism in these hosts that prevents overnodulation. Nodulation in white clover may occur in two distinct phases. In addition to the transient susceptibility of preemergent and developing root hair cells, there appeared to be an induced susceptibility of mature clover root hair cells. A cell-free bacterial exudate preparation from Rhizobium trifolii cells was found to render mature root hair cells of white clover more rapidly susceptible to nodulation.  相似文献   

4.
The initiation of Rhizobium infections and the development of nodules on the primary root of soybean Glycine max L. Merr cv Williams seedlings are strongly affected by exposure of the cotyledons/hypocotyls to light. Seedlings in plastic growth pouches were inoculated with R. japonicum in dim light and the position of the root tip of each seedling was marked on the face of the pouch. The pouches were covered and kept in the dark for various times before exposing the upper portions of the plants (cotyledons and hypocotyls) to light. Maximum nodulation occurred if the plants were kept in the dark until 1 day after inoculation. The exposure of plants to light 2 days before inoculation reduced the number of nodules by 50% while the number of nodules was reduced by 70% if the plants were kept in the dark until 7 days after inoculation. Anatomical studies revealed that exposure to light prior to inoculation reduced both the number of infection centers with visible infection threads and the number of infections which developed nodule meristems. Plants kept in the dark for 7 days after inoculation formed a normal number of infection threads above the root tip mark, but very few of these infections developed a nodule meristem. It appears that light stimulates soybean to produce substances which can both inhibit the formation of infection threads and enhance the development of nodules from established infection threads. The effects of light on nodulation appear to be expressed independently of the Rhizobium-induced suppression of nodule formation in younger regions of the root.  相似文献   

5.
The clover-nodulating Rhizobium leguminosarum bv. trifolii ANU794 initiates normal root-nodule development with abnormally low efficiency on the Trifolium subterraneum cv. Woogenellup. The cellular and developmental responses of Woogenellup roots to the site- and dose-defined inoculation of green fluorescent protein (gfp)-labeled cells of ANU843 (nodulation proficient) and ANU794 was investigated using light, fluorescence, and confocal microscopy. Strain ANU794-gfp induced three primordia types and four developmental responses at the inoculation site: true or aberrant nodules (on 5 and 25% of plants, respectively), hybrid structures (20% of plants), or lateral roots (50% of plants). The novel hybrid structures possessed nodule and lateral root-like features and unusual vascular patterning. Strain ANU794-gfp induces lateral root formation by stimulating pericycle cell divisions at all nearby protoxylem poles. Only true nodules induced by ANU794-gfp contained intracellular bacteria. In contrast, strain ANU843-gfp induced nodules only and lateral root formation was suppressed at spot inoculation sites. Primordium types were distinguishable by the emission spectrum characteristics of phenolic UV-absorbing and fluorescent compounds that accumulate in primordium cells. Hybrid primordia contained (at least) two fluorescent cell populations, suggesting that they are chimeric. The results suggest that ANU794 may produce both nodule- and lateral root-generating signals simultaneously.  相似文献   

6.
Lee KH  Larue TA 《Plant physiology》1992,100(4):1759-1763
Exogenous ethylene inhibited nodulation on the primary and lateral roots of pea, Pisum sativum L. cv Sparkle. Ethylene was more inhibitory to nodule formation than to root growth; nodule number was reduced by half with only 0.07 μL/L ethylene applied continually to the roots for 3 weeks. The inhibition was overcome by treating roots with 1 μm Ag+, an inhibitor of ethylene action. Exogenous ethylene also inhibited nodulation on sweet clover (Melilotus alba) and on pea mutants that are hypernodulating or have ineffective nodules. Exogenous ethylene did not decrease the number of infections per centimeter of lateral pea root, but nearly all of the infections were blocked when the infection thread was in the basal epidermal cell or in the outer cortical cells.  相似文献   

7.
The formation of first nodules inhibits subsequent nodulation in younger regions of alfalfa (Medicago sativa L.) roots by a feedback regulatory mechanism that controls nodule number systemically (G Caetano-Anollés, WD Bauer [1988] Planta 175: 546-557). Following inoculation with wild-type Rhizobium meliloti, almost all infections associated with cortical cell division developed into mature nodules. While the distribution of Rhizobium- induced cell divisions closely paralleled the distribution of first emergent nodules, only 9 to 15% of total cell division foci failed to become functional nodules. Nodule formation was restricted to the primary root when plants were inoculated before lateral root emergence. Excision of these primary root nodules allowed nodules to reappear in lateral roots clustered around the location of the root tip at the time of nodule removal. Apparently, this region regained susceptibility to infection within the first hours after excision of primary nodules and suppression of nodulation was restored a day later probably due to the development of new infection foci. Our results suggest that alfalfa controls nodulation during the onset of cell division in the root cortex and not during infection development as in soybean.  相似文献   

8.
The sym 5 mutants of pea, Pisum sativum L. cv Sparkle, do not differ in growth habit from their normal parent and nodulate poorly at a root temperature of 20°C. If inhibitors of ethylene formation or action (Co2+, aminoethoxyvinylglycine, or Ag+) are added to the substrate, nodulation of the sym 5 mutants is increased. Similar treatments of four other mutant sym lines do not restore nodulation. When Ag+ is added to the substrate from 4 days before to 4 days after inoculation with rhizobia, nodulation of sym 5 mutants is increased. The roots of the mutant need only be exposed to Ag+ for 4 hours to significantly increase nodule numbers. The content of free 1-aminocyclopropane-1-carboxylic acid and the production of ethylene in the lateral roots of sym 5 mutants do not differ from Sparkle.  相似文献   

9.
A small subpopulation of alfalfa (Medicago saliva L.) plants grown without fixed nitrogen can develop root nodules in the absence of Rhizobium. Cytological studies showed that these nodules were organized structures with no inter- or intracellular bacteria but with the histological characteristics of a normal indeterminate nodule. Few if any viable bacteria were recovered from the nodules after surface sterilization, and when the nodular content was used to inoculate alfalfa roots no nodulation was observed. These spontaneous nodules were formed mainly on the primary roots in the region susceptible to Rhizobium infection between 4 and 6 d after seed imbibition. Spontaneous nodules appeared as early as 10 d after germination and emerged at a rate comparable to normal nodules. The formation of spontaneous nodules on the primary root suppressed nodulation in lateral roots after inoculation with R. meliloti RCR2011. Excision of spontaneous nodules at inoculation eliminated the suppressive response. Our results indicate that the presence of Rhizobium is not required for nodule organogenesis and the elicitation of feedback regulation of nodule formation in alfalfa.Abbreviation RT root tip This work was supported by an endowment to the Racheff Chair of Excellence of the University of Tennessee, and the Soybean Promotion Board, Haskinsville, Tenn., USA. We are indebted to Noel Gerahty for performing the acetylene-reduction assays, and Dr. E.T. Graham for allowing the use of microscope facilities.  相似文献   

10.
T. A. Lie 《Plant and Soil》1969,31(3):391-406
Summary A number of experiments was carried out with pea plants growing in a nutrient solution of low pH, inhibitory to nodule formation but not to plant growth when combined nitrogen was available. It has been found that on transferring plants from a neutral culture solution to an acid solution of pH 4.5 at different periods of time after inoculation, nodulation is reduced when the exposure to low pH takes place during the first days after inoculation, and particularly on the second or third day. Once nodulation has been initiated, nodule growth and nitrogen fixation proceed normally in an acid solution. Failure of nodulation at low pH, under the conditions of these experiments, was not due to the inhibition of bacterial growth. From these results an acid-sensitive period, occurring during the second or third day after inoculation, was demonstrated.  相似文献   

11.
Summary Conditions and techniques for achieving good nodulation ofPhaseolus vulgaris L. in continuously aerated solution were developed from greenhouse experiments.If nodules had been established, their growth and activity and the growth of the plant were at least as good in solution culture as in gravel culture. Nodule formation was observed within 10 days of inoculation in small volumes of solution culture (1 liter). In large volumes (19 liters), similarly prompt nodulation occurred only if the plants were inoculated before or immediately after the seedlings were transferred to the solution from gravel or vermiculite; and the nodules were restricted to the roots that had been present at the time of transfer. Delayed inoculation, 2 days after transfer to large volume solutions, led to sparse nodulation observed only after 3 weeks. Delay or inhibition of nodulation in large volumes of solution could not be explained by failute of bacteria to colonize roots or by sparsity of root hairs.Nodule initiation in solution culture was severely inhibited at pH below 5.4. An additional problem in growing N2-dependent bean in solution culture was the buildup of Cl to toxic levels in the plant in nitrate-free media, even at solution concentrations as low as 0.4 mM Cl. Daily addition of 0.5 to 1.0 mg N per plant delayed nodule growth and activity slightly, but increased plant growth and alleviated the severe N-deficiency that otherwise developed before the onset of N2-fixation.  相似文献   

12.
J. Ikeda 《Plant and Soil》1994,158(1):23-27
The number of nodules formed by white clover (Trifolium repens L.) released from NaCl stress for 3 days (137 mol m-3) at different periods was examined. The NaCl stress-free periods were, 0 to 3 days prior to rhizobial inoculation, 0 to 3, 3 to 6, and 6 to 9 days after rhizobial inoculation. Plants not subjected to NaCl stress at 0 to 3 days after inoculation had 28.7 nodules per plant (74% of control), while plants continuously stressed had 5.2 nodules (13% of control). A NaCl stress-free period immediately after inoculation was the best among the stressed treatments, indicating that the early stage of nodulation was more sensitive than the later stages. Microscopic observation showed that imposing NaCl stress during the first 3 days after inoculation suppressed root hair curling to 9.1% of control, while the numbers of rhizobia attached to roots counted by dilution plates were not affected. Thus, there were no significant effects of NaCl stress on rhizobia. The sensitivity of the early stage of infection to NaCl stress was attributed to the inhibition of root hair curling.  相似文献   

13.
Dr. W. K. Purves 《Planta》1961,56(6):684-690
Summary This study concerns the effects of red and far-red light on flowering in the short day plantLemna perpusilla 6746. The critical day length for maximum flowering was found to be 10 hours. Exposure to red light near the middle of the dark period inhibited flowering, and the time of maximum sensitivity to red light occurred 9 hours after the beginning of dark periods of either 14 or 17 hours. The inhibition by red light was not reversible by far-red light, which also inhibited flowering, especially when given early in the dark period. Flowering inhibited by exposure to far-red light at the beginning of the dark period could be restored by subsequent exposure to red light. It appears that two photoperiodic partial processes in some plants may be controlled by the red, far-red reversible pigment system.With 5 Figures in the Text  相似文献   

14.
The (Brady)rhizobium nodulation gene products synthesize lipo-chitin oligosaccharide (LCO) signal molecules that induce nodule primordia on legume roots. In spot inoculation assays with roots of Vigna umbellata, Bradyrhizobium elkanii LCO and chemically synthesized LCO induced aberrant nodule structures, similar to the activity of these LCOs on Glycine soja (soybean). LCOs containing a pentameric chitin backbone and a reducing-end 2-O-methyl fucosyl moiety were active on V. umbellata. In contrast, the synthetic LCO-IV(C16:0), which has previously been shown to be active on G. soja, was inactive on V. umbellata. A B. japonicum NodZ mutant, which produces LCO without 2-O-methyl fucose at the reducing end, was able to induce nodule structures on both plants. Surprisingly, the individual, purified, LCO molecules produced by this mutant were incapable of inducing nodule formation on V. umbellata roots. However, when applied in combination, the LCOs produced by the NodZ mutant acted cooperatively to produce nodulelike structures on V. umbellata roots.  相似文献   

15.
Rooted cuttings ofCeanothus griseus varhorizontalis were irrigated with 0, 10, 20, 50, 75 or 100ppm nitrogen as NH4NO3 for eight weeks prior to inoculation with infectiveFrankia. After inoculation, half of the plants for each treatment nitrogen level continued to be irrigated with the preconditioning nitrogen level and half were given no more supplemental nitrogen. For plants continuously receiving nitrogen, nodule initiation (nodule number) was inversely correlated with increasing supplemental nitrogen levels, and suppressed above 50 ppm N. Leaf nitrogen above 2% in continuous-N plants correlated with greatly reduced or suppressed nodulation. Plants maintained after inoculation without supplemental nitrogen showed influence of the prior nitrogen treatment on nodulation. Preconditioning at 50 ppm and above greatly reduced the number of nodules formed. The evidence suggests that stored internal nitrogen can regulate nodulation.Plant biomass accumulated maximally when nodulation was suppressed, at 75 and 100 ppm supplemental N applied continuously. Internode elongation during the nodulation period occurred only on nodulated plants, or in the presence of supplemental N (10 ppm and above).  相似文献   

16.
The number of nodules formed in the roots of leguminous plants is systemically controlled by autoregulation of nodulation (AON). This study characterized two of the CLAVATA3/endosperm-surrounding region (CLE) genes involved in AON signal transduction. The GmRIC1 and GmRIC2 genes initiated expression solely in the roots at approximately 3 days after inoculation (DAI) with Nod factor-producing rhizobia, corresponding to the time point of AON, and the expression was up-regulated by cytokinins. Levels of GmRIC1 and GmRIC2 gene expression were much higher in the supernodulation mutant, SS2-2, than in wild-type (WT) soybeans during nodule development, even after initiation of nitrogen fixation. At 3 DAI, GmRIC2 was induced in the cells of the pericycle and the outer cortex, which undergo cell division to form nodule primordia and spreads from the central region to the whole nodule as it develops. Overexpression of GmRIC1 and GmRIC2 strongly suppressed the nodulation of WT roots as well as transgenic hairy roots in a GmNARK-dependent manner. This systemic suppression of nodulation was caused by the secretion of two CLE proteins into the extracellular space. Double grafting between WT and SS2-2 soybeans showed that signal Q is larger in SS2-2 than in WT roots during nodulation. The results of this study suggest that GmRIC1 and GmRIC2 are good candidates for root-derived signal Q in AON signal transduction.  相似文献   

17.
The effects of application of combined nitrogen fertilizer (ammonium nitrate or urea) on root-hair infection and nodulation of four grain legumes were studied. Young roots of each legume were inoculated with their compatible rhizobia. The application of the two forms of combined N either at the early stages of plant growth and/or at the time of nodule formation depressed root-hair curling, infection and nodulation. Infection of hairs on the primary roots was more sensitive to the N fertilizer than hair infection of secondary roots in bothVicia faba andPisum sativum. The nodule number and total fresh mass of the four legumes were drastically affected by fertilizer application. The combined N added both at early and at later stages significantly reduced the nodulation ofV. faba, Phaseolus vulgaris andVigna sinensis. The inhibitory effect of urea on nodulation ofP. sativum was only observed when the fertilizer was applied at the late stages of plant growth. It is concluded that, although the nodulation of the four legumes was suppressed by combined N, the initial events ofRhizobium-legume symbiosis (infection of roots and nodule initiation) are more sensitive to combined N than the stages after nodule formation.  相似文献   

18.
Plant elongation in Allium cepa L. cv. Dorata di Parma was stimulated by end-of-day far-red radiation, while the same treatment was ineffective with respect to bulbing response. It was concluded that the Pfr-dependent reactions which control bulbing are completed during the long daily light period (18 h). Day breaks of 3 h fluorescent white light, in the middle of the inductive photoperiod were inhibitory to bulbing. Repeated brief far-red irradiations could substitute for continuous far-red irradiations lasting 3 h in the middle of the photoperiod. Red light alone or applied immediately after each far-red irradiation inhibits bulb formation.  相似文献   

19.
The complex interactions that occur in systems with more than one type of symbiosis were studied using one isolate of Bradyrhizobium sp. and the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch inoculated on to the roots of Acacia holosericea A. Cunn. ex G. Don in vitro. After a single inoculation with Bradyrhizobium sp., bacteria typically entered the roots by forming infection threads in the root hair cells via the curling point of the root hair and/ or after intercellular penetration. Sheath formation and intercellular penetration were observed on Acacia roots after a single inoculation with Pisolithus tinctorius but no radial elongation of epidermal cells. Simultaneous inoculation with both microorganisms resulted in nodules and ectomycorrhiza on the root system, occasionally on the same lateral root. On lateral roots bearing nodules and ectomycorrhiza, the nodulation site was characterized by the presence of a nodule meristem and the absence of an infection thread; sheath formation and Hartig net development occurred regularly in the region of the roots adjacent to nodules. Prior inoculation with Bradyrhizobium sp. did not inhibit ectomycorrhizal colonization in root segments adjacent to nodules in which nodule meristems and infection threads were clearly present. Conversely, in ectomycorrhizae inoculated by bacteria, the nodule meristem and the infection thread were typically absent. These results show that simultaneous inoculation with both microorganisms inhibits infection thread development, thus conferring an advantage on fungal hyphae in the competition for infection sites. This suggests that fungal hyphae can modify directly and/or indirectly the recognition factors leading to nodule meristem initiation and infection thread development.  相似文献   

20.
Nitrate induced regulation of nodule formation in soybean   总被引:3,自引:1,他引:2       下载免费PDF全文
Nodule formation was inhibited by exposing soybean plants to nitrate in plastic growth pouches. Exposure to 15 millimolar nitrate resulted in a 2.5-fold decrease in the number of nodules formed in the region of the primary root above the mark made at the time of inoculation to indicate the position of the root tip. Serial section analysis of Bradyrhizobium infections in this region revealed that infection initiation was inhibited approximately 3-fold by exposure to nitrate. Both initial cortical cell divisions and infection thread formation were inhibited. If exposure to nitrate was delayed for 18 hours after the time of inoculation, inhibition was much reduced. This indicates that most of the nitrate-sensitive events of infection were functionally complete within less than 18 hours. Exposure to nitrate for periods of 4 to 24 hours after inoculation, followed by transfer to no-nitrate conditions for the remainder of the time, did not result in substantial inhibition of nodule number. This indicates that the effects of nitrate on infection initiation can be almost entirely reversible. Split towel pouches were used to physically separate portions of the primary root exposed to nitrate and portions of the root exposed to rhizobia. In experiments where nitrate was applied either below or above the inoculated region of the primary root, the degree of inhibition of nodulation was not correlated with either the external concentration of nitrate in contact with root cells undergoing infection or with the internal concentration of nitrate in the infectible region of the root. These results indicate that nitrate itself may not directly inhibit infection initiation or induce host regulatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号