首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pseudomonas putida RE204 employs a set of plasmid-specified enzymes in the catabolism of isopropylbenzene (cumene) and related alkylbenzenes. A 21,768 bp segment of the plasmid pRE4, whose sequence is discussed here, includes the ipb (isopropylbenzene catabolic) operon as well as associated genetic elements. The ipb operon, ipbAaAbAcAdBCEGFHD, encodes enzymes catalyzing the conversion of isopropylbenzene to isobutyrate, pyruvate, and acetyl-coenzyme A as well as an outer membrane protein (IpbH) of uncertain function. These gene products are 75 to 91% identical to those encoded by other isopropylbenzene catabolic operons and are somewhat less similar to analogous proteins of related pathways for the catabolism of mono-substituted benzenes. Upstream of ipbAa, ipbR encodes a positive regulatory protein which has about 56% identity to XylS regulatory proteins of TOL (xylene/toluate) catabolic plasmids. This similarity and that of the DNA sequence in the proposed ipb operator-promoter region (ipbOP) to the same region of the xyl meta operon (xylOmPm) suggest that, although the IpbR and XylS regulatory proteins recognize very different inducers, their interactions with DNA to activate gene expression are similar. Upstream of ipbR is an 1196 bp insertion sequence, IS1543, related to IS52 and IS1406. Separating ipbR from ipbAa are 3 additional tightly clustered IS elements. These are IS1544, related to IS1543, IS52, and other members of the IS5 family; IS1545, related to IS1240; and IS1546, related to IS1491. Encompassing the ipb catabolic genes and the other genetic elements and separated from each other by 18,492 bp, are two identical, directly repeated 1007 bp DNA segments. Homologous recombination between these segments appears to be responsible for the occasional deletion of the intervening DNA from pRE4.  相似文献   

2.
A Pseudomonas putida strain designated RE204, able to utilize isopropylbenzene as the sole carbon and energy source, was isolated. Tn5 transposon mutagenesis by means of the suicide transposon donor plasmid pLG221 yielded mutant derivatives defective in isopropylbenzene metabolism. These were characterized by the identification of the products which they accumulated when grown in the presence of isopropylbenzene and by the assay of enzyme activities in cell extracts. Based on the results obtained, the following metabolic pathway is proposed: isopropylbenzene----2,3-dihydro -2,3-dihydroxyisopropylbenzene----3-isopropylcatechol----2 -hydroxy-6-oxo-7-methylocta-2,4-dienoate----isobutyrate + 2-oxopent-4-enoate----amphibolic intermediates. Plasmid DNA was isolated from strain RE204 and mutant derivatives and characterized by restriction enzyme cleavage analysis. Isopropylbenzene-negative isolates carried a Tn5 insert within a 15-kilobase region of a 105-kilobase plasmid designated pRE4. DNA fragments of pRE4 carrying genes encoding isopropylbenzene catabolic enzymes were cloned in Escherichia coli with various plasmid vectors; clones were identified by (i) selection for Tn5-encoded kanamycin resistance in the case of Tn5 mutant plasmids, (ii) screening for isopropylbenzene dioxygenase-catalyzed oxidation of indole to indigo, and (iii) use of a Tn5-carrying restriction fragment, derived from a pRE4::Tn5 mutant plasmid, as a probe for clones carrying wild-type restriction fragments. These clones were subsequently used to generate a transposon insertion and restriction enzyme cleavage map of the isopropylbenzene metabolic region of pRE4.  相似文献   

3.
Eaton RW 《Journal of bacteriology》2001,183(12):3689-3703
Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains.  相似文献   

4.
5.
We isolated, sequenced, and characterized the cryptic plasmid pRE8424 from Rhodococcus erythropolis DSM8424. Plasmid pRE8424 is a 5,987-bp circular plasmid; it carries six open reading frames and also contains cis-acting elements, specifically a single-stranded origin and a double-stranded origin, which are characteristic of rolling-circle-replication plasmids. Experiments with pRE8424 derivatives carrying a mutated single-stranded origin sequence showed that single-stranded DNA intermediates accumulated in the cells because of inefficient conversion from single-stranded DNA to double-stranded DNA. This result indicates that pRE8424 belongs to the pIJ101/pJV1 family of rolling-circle-replication plasmids. Expression vectors that are functional in several Rhodococcus species were constructed by use of the replication origin from pRE8424. We previously reported a cryptic plasmid, pRE2895, from R. erythropolis, which may replicate by a θ-type mechanism, like ColE2 plasmids. The new expression vectors originating from pRE8424 were compatible with those derived from pRE2895. Coexpression experiments with these compatible expression vectors indicated that the plasmids are suitable for the simultaneous expression of multiple recombinant proteins.  相似文献   

6.
We isolated, sequenced, and characterized the cryptic plasmid pRE8424 from Rhodococcus erythropolis DSM8424. Plasmid pRE8424 is a 5,987-bp circular plasmid; it carries six open reading frames and also contains cis-acting elements, specifically a single-stranded origin and a double-stranded origin, which are characteristic of rolling-circle-replication plasmids. Experiments with pRE8424 derivatives carrying a mutated single-stranded origin sequence showed that single-stranded DNA intermediates accumulated in the cells because of inefficient conversion from single-stranded DNA to double-stranded DNA. This result indicates that pRE8424 belongs to the pIJ101/pJV1 family of rolling-circle-replication plasmids. Expression vectors that are functional in several Rhodococcus species were constructed by use of the replication origin from pRE8424. We previously reported a cryptic plasmid, pRE2895, from R. erythropolis, which may replicate by a theta-type mechanism, like ColE2 plasmids. The new expression vectors originating from pRE8424 were compatible with those derived from pRE2895. Coexpression experiments with these compatible expression vectors indicated that the plasmids are suitable for the simultaneous expression of multiple recombinant proteins.  相似文献   

7.
For the determination of the catabolic community diversity that is related to biodegradation potential, we developed a protocol for the assessment of catabolic marker genes in polluted soils. Primers specific to upper pathway extradiol dioxygenase genes were designed which amplified a 469-bp product from Sphingomonas sp. HV3. The constructed primers were used in PCR amplification of upper pathway ring cleavage genes from DNA directly isolated from a mineral oil polluted landfill site, a mineral oil landfarming site and a birch rhizosphere-associated soil that was either artificially polluted with a PAH mixture or not polluted. Amplicons were cloned and subjected to restriction fragment length polymorphism analysis dividing the HhaI-digested products into operational taxonomic units. Altogether 26 different operational taxonomic units were detected with the sequence similarity to known catabolic genes of Alpha-, Beta-, and Gammaproteobacteria. Phylogenetic analysis divided the operational taxonomic units from the polluted soils into seven clusters. Two contained exclusively sequences with no close homologues in the database, therefore representing novel catabolic genes. This large proportion of novel extradiol sequences shows that there is an extensive unknown catabolic diversity in polluted environments.  相似文献   

8.
Tn4371, a 55-kb transposable element involved in the degradation and biphenyl or 4-chlorobiphenyl identified in Ralstonia eutropha A5, displays a modular structure including a phage-like integrase gene (int), a Pseudomonas-like (chloro)biphenyl catabolic gene cluster (bph), and RP4- and Ti-plasmid-like transfer genes (trb) (C. Merlin, D. Springael, and A. Toussaint, Plasmid 41:40-54, 1999). Southern blot hybridization was used to examine the presence of different regions of Tn4371 in a collection of (chloro)biphenyl-degrading bacteria originating from different habitats and belonging to different bacterial genera. Tn4371-related sequences were never detected on endogenous plasmids. Although the gene probes containing only bph sequences hybridized to genomic DNA from most strains tested, a limited selection of strains, all beta-proteobacteria, displayed hybridization patterns similar to the Tn4371 bph cluster. Homology between Tn4371 and DNA of two of those strains, originating from the same area as strain A5, extended outside the catabolic genes and covered the putative transfer region of Tn4371. On the other hand, none of the (chloro)biphenyl degraders hybridized with the outer left part of Tn4371 containing the int gene. The bph catabolic determinant of the two strains displaying homology to the Tn4371 transfer genes and a third strain isolated from the A5 area could be mobilized to a R. eutropha recipient, after insertion into an endogenous or introduced IncP1 plasmid. The mobilized DNA of those strains included all Tn4371 homologous sequences previously identified in their genome. Our observations show that the bph genes present on Tn4371 are highly conserved between different (chloro)biphenyl-degrading hosts, isolated globally but belonging mainly to the beta-proteobacteria. On the other hand, Tn4371-related mobile elements carrying bph genes are apparently only found in isolates from the environment that provided the Tn4371-bearing isolate A5.  相似文献   

9.
10.
Eight new primer sets were designed for PCR detection of (i) mono-oxygenase and dioxygenase gene sequences involved in initial attack of bacterial aerobic BTEX degradation and of (ii) catechol 2,3-dioxygenase gene sequences responsible for meta-cleavage of the aromatic ring. The new primer sets allowed detection of the corresponding genotypes in soil with a detection limit of 10(3)-10(4) or 10(5)-10(6) gene copies g(-1) soil, assuming one copy of the gene per cell. The primer sets were used in PCR to assess the distribution of the catabolic genes in BTEX degrading bacterial strains and DNA extracts isolated from soils sampled from different locations and depths (vadose, capillary fringe and saturated zone) within a BTEX contaminated site. In both soil DNA and the isolates, tmoA-, xylM- and xylE1-like genes were the most frequently recovered BTEX catabolic genes. xylM and xylE1 were only recovered from material from the contaminated samples while tmoA was detected in material from both the contaminated and non-contaminated samples. The isolates, mainly obtained from the contaminated locations, belonged to the Actinobacteria or Proteobacteria (mainly Pseudomonas). The ability to degrade benzene was the most common BTEX degradation phenotype among them and its distribution was largely congruent with the distribution of the tmoA-like genotype. The presence of tmoA and xylM genes in phylogenetically distant strains indicated the occurrence of horizontal transfer of BTEX catabolic genes in the aquifer. Overall, these results show spatial variation in the composition of the BTEX degradation genes and hence in the type of BTEX degradation activity and pathway, at the examined site. They indicate that bacteria carrying specific pathways and primarily carrying tmoA/xylM/xylE1 genotypes, are being selected upon BTEX contamination.  相似文献   

11.
Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.  相似文献   

12.
F V Schwarz  V Perreten  M Teuber 《Plasmid》2001,46(3):170-187
The complete 50,237-bp DNA sequence of the conjugative and mobilizing multiresistance plasmid pRE25 from Enterococcus faecalis RE25 was determined. The plasmid had 58 putative open reading frames, 5 of which encode resistance to 12 antimicrobials. Chloramphenicol acetyltransferase and the 23S RNA methylase are identical to gene products of the broad-host-range plasmid pIP501 from Streptococcus agalactiae. In addition, a 30.5-kb segment is almost identical to pIP501. Genes encoding an aminoglycoside 6-adenylyltransferase, a streptothricin acetyltransferase, and an aminoglycoside phosphotransferase are arranged in tandem on a 7.4-kb fragment as previously reported in Tn5405 from Staphylococcus aureus and in pJH1 from E. faecalis. One interrupted and five complete IS elements as well as three replication genes were also identified. pRE25 was transferred by conjugation to E. faecalis, Listeria innocua, and Lactococcus lactis by means of a transfer region that appears similar to that of pIP501. It is concluded that pRE25 may contribute to the further spread of antibiotic-resistant microorganisms via food into the human community.  相似文献   

13.
The human microbiota is suggested to be a reservoir of antibiotic resistance (ABR) genes, which are exchangeable between transient colonizers and residing bacteria. In this study, the transfer of ABR genes from Enterococcus faecalis to Listeria monocytogenes and to commensal bacteria of the human gut microbiota was demonstrated in a colonic fermentation model. In the first fermentation, an E. faecalis donor harboring the marked 50-kb conjugative plasmid pRE25(*) and a chromosomal marker was co-immobilized with L. monocytogenes and infant feces. In this complex environment, the transfer of pRE25(*) to L. monocytogenes was observed. In a second fermentation, only the E. faecalis donor and feces were co-immobilized. Enumeration of pRE25(*) and the donor strain by quantitative PCR revealed an increasing ratio of pRE25(*) to the donor throughout the 16-day fermentation, indicating the transfer of pRE25(*) . An Enterococcus avium transconjugant was isolated, demonstrating that ABR gene transfer to gut commensals occurred. Moreover, pRE25(*) was still functional in both the E. avium and the L. monocytogenes transconjugant and transmittable to other genera in filter mating experiments. Our study reveals that the transfer of a multiresistance plasmid to commensal bacteria in the presence of competing fecal microbiota occurs in a colonic model, suggesting that commensal bacteria contribute to the increasing prevalence of antibiotic-resistant bacteria.  相似文献   

14.
Pseudomonas sp. strain NRRLB-12227 degrades the s-triazine melamine by a six-step pathway which allows it to use melamine and pathway intermediates as nitrogen sources. With the plasmid pLG221, mutants defective in five of the six steps of the pathway were generated. Tn5-containing-EcoRI fragments from these mutants were cloned and identified by selection for Tn5-encoded kanamycin resistance in transformants. A restriction fragment from ammelide-negative mutant RE411 was used as a probe in colony hybridization experiments to identify cloned wild-type s-triazine catabolic genes encoding ammeline aminohydrolase, ammelide aminohydrolase, and cyanuric acid amidohydrolase. These genes were cloned from total cellular DNA on several similar, but not identical, HindIII fragments, as well as on a PstI fragment and a BglII fragment. Restriction mapping and Southern hybridization analyses of these cloned DNA fragments suggested that these s-triazine catabolic genes may be located on a transposable element, the ends of which are identical 2.2-kb insertion sequences.  相似文献   

15.
This study focused on detecting catabolic genes for polycyclic aromatic hydrocarbons (PAHs) distributed in the reed rhizosphere of Sunchon Bay, Korea. These marsh and mud environments were severely affected by human activities, including agriculture and fisheries. Our previous study on microbial roles in natural decontamination displayed the possibility that PAH-degrading bacteria, such as Achromobacter sp., Alcaligenes sp., Burkholderia sp. and Pseudomonas sp. play an important decontamination role in a reed rhizosphere. In order to gain further fundamental knowledge on the natural decontamination process, catabolic genes for PAH metabolism were investigated through PCR amplification of dioxygenase genes using soil genomic DNA and sequencing. Comparative analysis of predicted amino acid sequences from 50 randomly selected dioxygenase clones capable of hydroxylating inactivated aromatic nuclei indicated that these were divided into three groups, two of which might be originated from PAH-degrading bacteria. Amino acid sequences of each dioxygenase clone were a part of the genes encoding enzymes for initial catabolism of naphthalene, phenanthrene, or pyrene that might be originated from bacteria in the reed rhizosphere of Sunchon Bay.  相似文献   

16.
The occ and noc regions of octopine and nopaline Ti plasmids in Agrobacterium tumefaciens are responsible for the catabolic utilization of octopine and nopaline, respectively. Opine-inducible promoters, genes for regulatory proteins and for catabolic enzymes, had been identified in previous work. However, both regions contained additional DNA stretches which were under the control of opine-inducible promoters, but the functions were unknown. We investigated these stretches by DNA sequence and functional analyses. The sequences showed that both of the catabolic regions contain a set of four genes which are transcribed in the same direction. The occ and noc region genes are related, but the arrangement of the genes is different. The deduced polypeptides are related to those of binding protein-dependent transport systems of basic amino acids in other bacteria. The comparison suggested that three of the polypeptides are located in the membrane and that one is a periplasmic protein. We constructed cassettes which contained either the putative transport genes only or the complete occ or noc region; all constructs, however, included the elements necessary for opine-induced expression of the genes (the regulatory gene and the inducible promoters). Uptake studies with 3H-labelled octopine showed that the putative transport genes in the occ region code for octopine uptake proteins. The corresponding studies with 3H-labelled nopaline and the noc region cassettes indicated that the uptake of nopaline requires the putative transport genes and additional functions from the left part of the noc region.  相似文献   

17.
18.
The complete 50,237-bp DNA sequence of the conjugative and mobilizing multiresistance plasmid pRE25 from Enterococcus faecalis RE25 was determined. The plasmid had 58 putative open reading frames, 5 of which encode resistance to 12 antimicrobials. Chloramphenicol acetyltransferase and the 23S RNA methylase are identical to gene products of the broad-host-range plasmid pIP501 from Streptococcus agalactiae. In addition, a 30.5-kb segment is almost identical to pIP501. Genes encoding an aminoglycoside 6-adenylyltransferase, a streptothricin acetyltransferase, and an aminoglycoside phosphotransferase are arranged in tandem on a 7.4-kb fragment as previously reported in Tn5405 from Staphylococcus aureus and in pJH1 from E. faecalis. One interrupted and five complete IS elements as well as three replication genes were also identified. pRE25 was transferred by conjugation to E. faecalis, Listeria innocua, and Lactococcus lactis by means of a transfer region that appears similar to that of pIP501. It is concluded that pRE25 may contribute to the further spread of antibiotic-resistant microorganisms via food into the human community.  相似文献   

19.
Gene sequences encoding gibberellin (GA) biosynthetic and catabolic enzymes were isolated from Himalaya barley. These genes account for most of the enzymes required for the core pathway of GA biosynthesis as well as for the first major catabolic enzyme. By means of DNA gel blot analysis, we mapped coding sequences to chromosome arms in barley and wheat using barley-wheat chromosome addition lines, nulli-tetrasomic substitution and ditelosomic lines of wheat. These same sequences were used to identify closely related sequences from rice, which were mapped in silico, thereby allowing their syntenic relationship with map locations in barley and wheat to be investigated. Determination of the chromosome arm locations for GA metabolic genes provides a framework for future studies investigating possible identity between GA metabolic genes and dwarfing genes in barley and wheat.Wolfgang Spielmeyer and Marc Ellis have contributed equally to this work.  相似文献   

20.
Enterococci are among the most notorious bacteria involved in the spread of antibiotic resistance (ABR) determinants via horizontal gene transfer, a process that leads to increased prevalence of antibiotic-resistant bacteria. In complex microbial communities with a high background of ABR genes, detection of gene transfer is possible only when the ABR determinant is marked. Therefore, the conjugative multiresistance plasmid pRE25, originating from a sausage-associated Enterococcus faecalis, was tagged with a 34-bp random sequence marker spliced by tet(M). The plasmid constructed, designated pRE25(*) , was introduced into E. faecalis CG110/gfp, a strain containing a gfp gene as chromosomal marker. The plasmid pRE25(*) is fully functional compared with its parental pRE25, occurs at one to two copies per chromosome, and can be transferred to Listeria monocytogenes and Listeria innocua at frequencies of 6 × 10(-6) to 8 × 10(-8) transconjugants per donor. The markers on the chromosome and the plasmid enable independent quantification of donor and plasmid, even if ABR genes occur at high numbers in the background ecosystem. Both markers were stable for at least 200 generations, permitting application of the strain in long-running experiments. Enterococcus faecalis CG110/gfp/pRE25(*) is a potent tool for the investigation of horizontal ABR gene transfer in complex environments such as food matrices, biofilms or colonic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号