首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Immunofluorescence microscopic and electron microscopic investigations revealed components of the matrix and of the basal lamina (collagen type I, III, IV and V, BL-heparan sulfate and fibronectin) in the sinus wall (Disse's space) of the livers of newborn and adult marmosets (Callithrix jacchus). Collagen type I was missing in both the two age groups. Small amounts of laminin were present in the livers of newborn and absent in those of adult animals, whereas collagen type III occurred in the form of delicate fibres. Light microscopic inspection showed a continuous distribution of all other components in the sinus wall. The amount of collagen type III and V increased depending on the age. Electron microscopic investigations revealed single or bundled fibrils (20-30 nm) and filaments (10-12 nm). After addition of tannic acid, plaques of a fine-filamentous network and incorporated granules were observed. After addition of resting Ruthenium Red, electron-dense granules (20-60 nm) were irregularly distributed in the structureless space, resting on collagenous fibrils and cell membranes. The fibrils were allocated to collagen type III, the filaments to collagen type V. The plaques were supposed to contain heparan sulfate, collagen type IV and fibronectin. The absence of a Lamina densa of the basal lamina was attributed to the absence of laminin which probably plays an important role in the formation of this layer. Differences in the distribution pattern of the matrix components and thus a functional mosaic of the permeability of Disse's space were assumed. The complete absence of collagen type I and laminin in the lobules makes the adult marmoset liver especially suited for studies on the importance of this collagen type under pathological conditions, since both components are expressed in this way.  相似文献   

2.
Macromolecular organization of bovine lens capsule   总被引:3,自引:0,他引:3  
Rabbit antisera to type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin were used to localize these proteins in cross-sections of bovine anterior lens capsule. The antisera were exposed to (a) 10-micron frozen-thawed sections of formaldehyde-fixed tissue for examination in the light microscope by the indirect immunofluorescence method and (b) formaldehyde-fixed and L. R. White plastic-embedded thin sections for electron microscopic examination by the protein A-gold technique. The intensity of immunofluorescence was both uniform and strong throughout for type IV collagen, laminin and entactin, but patchy and weak for fibronectin. Electron microscopic immunolabeling with protein A-gold showed that all five components were distributed throughout the full thickness of the membrane, albeit the density of gold particles was not identical for all basement membrane proteins. In general, the number of particles per micron2 was greatest for type IV collagen and entactin, moderate for laminin and heparan sulfate proteoglycan and low for fibronectin. The ultrastructure of the lens capsule as examined by the electron microscope revealed a relatively uniform parallel alignment of filaments, thought to be collagenous. Since the distribution of the filaments corresponds well with the observed immunocytochemical pattern it is concluded that type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin co-localize throughout the cross-section of the anterior lens capsule.  相似文献   

3.
Aso S  Baba R  Noda S  Ikuno S  Fujita M 《Teratology》2000,61(4):262-272
Adult homozygous lap mice show various eye abnormalities such as aphakia, retinal disorganization, and dysplasia of the cornea and anterior chamber. In the fetal eye of a homozygous lap mouse, the lens placode appears to develop normally. However, the lens vesicle develops abnormally to form a mass of cells without a cavity, and the mass vanishes soon afterward. Apoptotic cell death is associated with the disappearance of the lens anlage. We examined the basement membranes of the lens anlage of this mutant by immunohistochemical methods under light microscopy using antibodies against basement membrane components of the lens anlage, type IV collagen, fibronectin, laminin, heparan sulfate proteoglycan, and entactin and by transmission electron microscopy. Immunohistochemistry showed the distribution and intensity of antibody binding to the lens anlage to be almost the same for each these antibodies regardless of the stage of gestation or whether the anlagen were from normal BALB/c or lap mice. Thus, positive continuous reactions were observed around the exterior region of the lens anlage from day 10 of gestation for type IV collagen, fibronectin, laminin, heparan sulfate proteoglycan antibodies, and at least from day 11of gestation for entactin antibody. The basement membrane lamina densa of both normal and lap mice was shown by electron microscopy to be discontinuous at days 10 and 10.5 of gestation. However, by day 11 the lamina densa was continuous in the lens anlagen of normal mice but still discontinuous in the lap mice. By day 12 of gestation, the lamina densa had thickened markedly in normal mice, whereas in lap mice it remained discontinuous and its thinness indicated hypoplasia. These results indicate that, while all basement components examined are produced and deposited in the normal region of the lens anlage in the lap mouse, the basement membrane is, for some reason, imperfectly formed. The time at which hypoplasia of the basement membrane was observed in this mutant coincided with the stage during which apoptosis in the lens anlage occurred. This result may indicate a possibility of the relationship between the basement membrane and apoptosis in this mutant.  相似文献   

4.
The distribution of chick muscle spindles of eight connective tissue proteins (collagen types I, IV, V, and VI, laminin, heparan sulfate, fibronectin, and brachionectin/tenascin) was examined by immunofluorescent histochemistry. Intrafusal fibers were surrounded by layers of collagen type VI and fibronectin, and by an external lamina containing collagen type IV, laminin, and heparan sulfate. Most of these layers displayed a different pattern of staining at the sensory region of the equator than at the polar region. The crescent-like sheath that caps each intrafusal fiber and sensory terminal at the equator was strongly positive for collagen type I and weakly positive for collagen type V. The outer spindle capsule contained laminin, heparan sulfate, collagen types IV and VI, brachionectin/tenascin, fibronectin, and to a lesser degree also collagen types I and V. Brachionectin/tenascin had the narrowest distribution of any of the connective tissue macromolecules studied. It was found only in the outer capsule and in the coverings of blood vessels and nerves associated with the outer capsule.  相似文献   

5.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize alpha 2 beta 1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

6.
To define the role of the extracellular matrix (ECM) in hepatogenesis, we examined the temporal and spatial deposition of fibronectin, laminin and collagen types I and IV in 12.5-21.5 day fetal and 1, 7 and 14 day postnatal rat livers. In early fetal liver, discontinuous deposits of the four ECM components studied were present in the perisinusoidal space, with laminin being the most prevalent. All basement membrane zones contained collagen type IV and laminin, including those of the capsule (mesothelial), portal vein radicles and bile ductules. Fibronectin had a distribution similar to that of collagen type IV early in gestation. However, at later gestational dates, fibronectin distribution in the portal triads approached that of collagen type I, being present in the interstitial connective tissues; whereas, collagen type IV and laminin were restricted to vascular and biliary basement membrane zones in those regions. The cytoplasm of some sinusoidal lining cells and hepatocytes reacted with antibodies to extracellular matrix components. By electron microscopy the immunoreactive material was localized in the endoplasmic reticulum, indicating the ability of these cells to synthesize these ECM proteins. Biliary ductular cells had prominent intracytoplasmic staining for laminin and collagen type IV from day 19.5 gestation until 7 days of postnatal life, but lacked demonstrable fibronectin or collagen type I. These results demonstrate that by 12.5 days of gestation the rat liver anlage has deposited a complex extracellular matrix in the perisinusoidal space. The prevalence of laminin in the developing hepatic lobules suggests a possible role for this glycoprotein in hepatic morphogenesis. In view of the intimate association of the hepatic lobular extracellular matrix with the developing vasculature, we hypothesize that laminin provides a scaffold of the developing liver, but once the ontogenesis is complete, intrahepatic perisinusoidal laminin expression is suppressed.  相似文献   

7.
Chick lens epithelial cells were cultured on plastic and type IV collagen substrata, and the confluent cultures were labeled continuously with [35S]sulfate for 20 h. Intact lenses were also labeled in the same way. 35S-Proteoglycans isolated from those cultures were compared for their molecular sizes and glycosaminoglycan compositions. The results have shown that: 1) Proteoglycans synthesized by cells on type IV collagen were significantly smaller than those by cells on plastic. 2) Proteoglycans of intact lens showed a broad distribution of molecular size and contained a high proportion of chondroitin sulfate in the medium fraction compared to those of the two cell cultures. In order to explain such differences between proteoglycans from cultures, label-chase experiments with [35S]sulfate were done for proteoglycans synthesized. 35S-Proteoglycans isolated at each chase time 0, 2.5, and 17 h) were compared and the following results were found: 1) The cell layers of both "plastic" and "type IV collagen" cultures contained glycosaminoglycan species predominantly at each chase time rather than proteoglycans. 2) Changes in the glycosaminoglycan compositions of medium fractions of cell cultures were observed during the chase period; in medium of the "plastic" culture, proteoheparan sulfate increased with chase time, whereas in medium of the "type IV collagen" culture, chondroitin sulfate glycosaminoglycan (not proteoglycan) increased with chase time. 3) In intact lens culture, lens capsule fraction at every chase time contained a proteoglycan unique in molecular size, which was not found in cell culture fractions. 4) All fractions from intact lens cultures contained a higher content of chondroitin sulfate at every chase time than the respective fractions from cell cultures. These results suggest that adhesion of the cells to type IV collagen or lens capsule influences the degradation and secretion of proteoglycans. In addition, they can account partially for the above-described differences in molecular sizes and glycosaminoglycan compositions between 35S-proteoglycans from various cultures continuously labeled with [35S]sulfate.  相似文献   

8.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize α2β1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

9.
The teratogenic effects of the dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have previously been studied in several species, and hydronephrosis has been reported to be a frequent abnormality in near-term fetuses. C57BL/6N female mice, given 12 micrograms/kg TCDD, P.O., on day 10 of gestation were killed on days 14, 15, and 16; fetal kidneys were collected and prepared for either immunofluorescent localization of several extracellular matrix components (ECM) or transmission electron microscopy (TEM). The TCDD-treated and control kidneys showed the same pattern of staining for fibronectin, but TCDD-treated kidneys displayed a diminished overall intensity. The intensity of laminin and type IV collagen immunofluorescence also appeared to be decreased, and deviations in the pattern of antibody binding were detected for differentiating TCDD-treated nephrons. Binding of the laminin antibody to the basal lamina was decreased in the parietal layer of Bowman's capsules in more advanced stages of differentiation. TEM analysis focused on the basal lamina of the tubules and Bowman's capsule. In TCDD-exposed kidneys, ECM components adjacent to differentiating nephrons were less abundant, and the basal lamina of the developing Bowman's capsules had a diminished lamina densa. The earliest nephrons to develop display these defects and comprise the first functional filtration units of the metanephric kidney. These ultrastructural changes noted in TCDD-exposed nephrons may promote proteinuria, a condition normally observed in the developing kidney when the filtration barrier is immature.  相似文献   

10.
The distribution of laminin, type IV collagen, heparan sulfate proteoglycan, and fibronectin was investigated in the rat testicular lamina propria by electron microscopic immunocytochemistry. Distinct patterns were observed for each antigen within the extracellular matrix (ECM) layers of the lamina propria. Laminin, type IV collagen, and heparan sulfate proteoglycan all localized to the seminiferous tubule basement membrane. Type IV collagen and heparan sulfate proteoglycan, but not laminin, localized to the seminiferous tubule side of the peritubular myoid cells. All four of the antigens were localized between the peritubular and lymphatic endothelial cells. Failure to localize fibronectin in the ECM layer between the Sertoli and peritubular myoid cells tends to support the concept that adult Sertoli cells do not produce this protein in vivo. Intracellular immunostaining was insufficient to allow unambiguous identification of the cellular source of any of the ECM molecules.  相似文献   

11.
The optic vesicle develops as an evagination of the cephalic neural folds. We have examined the early development of the optic vesicle in Swiss Webster mice using correlated transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopic (LM) measurements of cell shape changes, immunohistochemical localization of basal lamina (BL) components (type IV collagen, laminin and heparan sulphate proteoglycan (HSPG)) and ultrastructural analysis of the BL. Like the neuroepithelium in other regions, the low columnar cells of the neural plate in the future optic vesicle region become high columnar, then wedge shaped following constriction of the cell apices to form the C-shaped vesicle. In this region, the cells elongate 2 times their initial height before the neural tube closes, then shorten 20% as the vesicle is completed. Cell apices decrease in width by about one half during vesicle formation. Deposition of BL components was initially even, with type IV collagen and laminin reduced in deposition in regions of outpouching. At later stages the linear, even distribution of all four components was re-established. Ultrastructural analysis confirmed the BL discontinuity and re-establishment and correlated the observed cell shaping alterations with apparent increases in the number of microtubules (during elongation) and microfilaments (during apical constriction). The number of apical intercellular junctions also appeared to increase in number during optic vesicle formation, possibly providing stability and coordination to the evagination process.  相似文献   

12.
The macromolecular components of bovine glomerular basement membrane (GBM) and lens capsules (anterior and posterior) solubilized by sequential extractions with denaturing agents were quantitated and characterized by polyacrylamide gel electrophoresis, CL-6B filtration, and DEAE-cellulose chromatography with the help of immunochemical techniques. Laminin, entactin, fibronectin, and heparan sulfate proteoglycan were primarily recovered (over 80%) from both basement membranes in a guanidine HCl extract which contained only a limited amount of the total protein (10-14%); most of the remainder of these noncollagenous components could be solubilized by the guanidine in the presence of reducing agent. Although a portion of the Type IV collagen could be obtained by these treatments, effective extraction of this protein depended on exposure to sodium dodecyl sulfate under reducing conditions. Immunoblot analysis revealed a remarkably similar pattern for GBM and lens capsule Type IV collagens with prominent bands of Mr = 390,000, 210,000, and 190,000 being evident. Fibronectin was present in much greater amounts in GBM than lens capsule while the reverse was true for entactin. In both GBM and lens capsules, the entactin (Mr = 150,000) exceeded laminin; the latter protein on immunoblotting was found to contain primarily the alpha-subunit (Mr = 200,000). The size of the heparan sulfate proteoglycan from anterior (Mr = 400,000) and posterior lens capsule (Mr greater than 500,000) was substantially larger than that from GBM (Mr = 200,000). During DEAE-cellulose chromatography under nonreducing conditions in a denaturing solvent, a portion of the Type IV collagen coeluted with the proteoglycan from these membranes. Considerable Bandeiraea simplicifolia I binding activity (alpha-D-galactose specific) was observed in GBM and lens capsule extracts and column fractions which could not be accounted for by laminin alone. Several components which reacted with this lectin were seen on transblots and among these Type IV collagen was identified. In contrast to the basement membranes from bovine tissues, the constituents from human GBM did not react with the B. simplicifolia I lectin.  相似文献   

13.
Electron microscopic immunostaining of rat duodenum and incisor tooth was used to examine the location of four known components of the basement-membrane region: type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin. Antibodies or antisera against these substances were localized by direct or indirect peroxidase methods on 60-microns thick slices of formaldehyde-fixed tissues. In the basement- membrane region of the duodenal epithelium, enamel-organ epithelium, and blood-vessel endothelium, immunostaining for all four components was observed in the basal lamina (also called lamina densa). The bulk of the lamina lucida (rara) was unstained, but it was traversed by narrow projections of the basal lamina that were immunostained for all four components. In the subbasement-membrane fibrous elements or reticular lamina, immunostaining was confined to occasional "bridges" extending from the epithelial basal-lamina to that of adjacent capillaries. The joint presence of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin in the basal lamina indicates that these substances do not occur in separate layers but are integrated into a common structure.  相似文献   

14.
Rotary shadowing electron microscopy was used to examine complexes formed by incubating combinations of the basement membrane components: type IV collagen, laminin, large heparan sulfate proteoglycan and fibronectin. Complexes were analyzed by length measurement from the globular (COOH) domain of type IV collagen, and by examination of the four arms of laminin and the two arms of fibronectin. Type IV collagen was found to contain binding sites for laminin, heparan sulfate proteoglycan and fibronectin. With laminin the most frequent site was centered approximately 81 nm from the carboxy end of type IV collagen. Less frequent sites appeared to be present at approximately 216 nm and approximately 291 nm, although this was not apparent when the sites were expressed as a fraction of the length of type IV collagen to which they were bound. For heparan sulfate proteoglycan the most frequent site occurred at approximately 206 nm with a less frequent site at approximately 82 nm. For fibronectin, a single site was present at approximately 205 nm. Laminin bound to type IV collagen through its short arms, particularly through the end of the lateral short arms and to heparan sulfate proteoglycan mainly through the end of its long arm. Fibronectin bound to type IV collagen through the free end region of its arms. Using a computer graphics program, the primary laminin binding sites of two adjacent type IV collagen molecules were found to align in the "polygonal" model of type IV collagen, whereas with the "open network" model, a wide meshed matrix is predicted. It is proposed that basement membrane may consist of a lattice of type IV collagen coated with laminin, heparan sulfate proteoglycan and fibronectin.  相似文献   

15.
Interactions of basement membrane components   总被引:23,自引:0,他引:23  
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain (Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

16.
Tendon organs from leg and forearm muscles of white leghorn chickens were examined with a library of monoclonal antibodies to determine the composition of their connective-tissue framework and the types of connective-tissue macromolecules that occur at the sites where muscle fibers attach to the receptors. The capsules of the tendon organs were positive for connective-tissue macromolecules typical of basal lamina (collagen type IV, laminin, and heparin sulfate proteoglycan) and for tenascin, collagen types III and VI, and fibronectin. Connective-tissue bundles in the lumen of a receptor reacted primarily with antibodies against collagen type I and 4-chondroitin sulfate. The narrow partitions that divide each lumen into compartments stained for collagen type III. Toward its tendinous end, a receptor made few contacts with muscle fibers. Instead, the capsule and the collagenous bundles blended gradually with the intermuscular portions of tendons. At the muscular end, the connections were more complex. Muscle fibers that attached in series to tendon organs split to produce basal lamina-covered, finger-like extensions, which were separated from each other by fissures. Tongues of connective tissue containing tenascin, collagen types I and VI, and fibronectin extended into the fissures. Distally the tongues were continuous with the tenascin in the capsule and just internal to the capsule, fibronectin and basal lamina macromolecules in the capsule, and collagen type I in the collagenous bundles. The uninterrupted presence of these macromolecules around terminating muscle fibers and in the capsule and/or the intraluminal collagen bundles suggests that muscle fibers that attach in series at the muscular end exert a force during muscular contraction on the intraluminal collagen bundles and on the receptor capsule.  相似文献   

17.
Alterations in the basal lamina (BL) of developing follicles were studied by immunofluorescent microscopy using antibodies against type IV collagen, laminin, and fibronectin, and by electron microscopy. Ovarian development was induced in immature rats by sequential administration of estradiol, follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG). A continuous BL was observed in healthy follicles treated with estradiol and FSH. As determined by immunofluorescence, laminin, type IV collagen, and fibronectin were restricted to the BL and the theca but not to the granulosa. When follicles were allowed to undergo atresia or induced to ovulate with hCG, the BL became fragmented. This was confirmed by electron microscopy of healthy, atretic, and luteinizing follicles which showed that in healthy follicles the BL was continuous, whereas in both atretic and luteinizing follicles, it was fragmented. Atresia was also associated with the penetration of thecal cells into the follicles. These observations indicate that the intact BL present in healthy follicles undergo extensive changes during atresia and ovulation.  相似文献   

18.
Basement membrane macromolecules, including type IV collagen, laminin, and heparan sulfate proteoglycan, do not aggregate when incubated alone. Rather, precipitation occurs in the presence of equimolar amounts of laminin and type IV collagen but variable amounts of heparan sulfate proteoglycan. This interaction requires native laminin and type IV collagen. Heparan sulfate proteoglycan increases the precipitation of laminin particularly in the presence of type IV collagen. Fibronectin does not cause type IV collagen to precipitate. These studies show that the components of basement membrane interact in a highly specific manner and suggest that such interactions may be involved in the deposition of basement membrane in situ.  相似文献   

19.
The basal lamina components laminin, heparan sulfate proteoglycan (HSPG), and type IV collagen were synthesized and codeposited in the extracellular matrix (ECM) by a cultured human cell line from gestational choriocarcinoma (JAR). Laminin and HSPG formed a noncovalent complex detected by the coimmunoprecipitation of HSPG with laminin from cell lysates and culture media. The complex was stable in the cell lysis buffer that contained detergents (1% Triton X-100, 0.5% deoxycholate, and 0.1% sodium dodecyl sulfate) and sodium chloride (from 0.15 to 1.0 M), but was dissociated by adding 8 M urea to the detergent lysates. Even though JAR cells produced roughly equal amounts of HSPG and chondroitin sulfate proteoglycan, only HSPG complexed with laminin, suggesting a specific interaction between these basal lamina components. The laminin-HSPG complex was deposited and retained in the ECM. This was shown biochemically by isolating an enriched fraction of ECM from JAR cells cultured on native type I collagen gels. At steady state, more than half (52%) of the laminin-HSPG in the culture was recovered in the ECM fraction, in contrast to 16% of the total laminin and 29% of the total type IV collagen, which were secreted to a greater extent than laminin-HSPG into the culture medium. The retention of the laminin-HSPG complex in the ECM suggests that it may participate in the assembly of the basal lamina-like extracellular matrix deposited by JAR cultures. Omission of ascorbate from the culture medium abolished the ECM deposition of type IV collagen but had little effect on the deposition of laminin or laminin-HSPG. This demonstrates that the stable deposition of laminin-HSPG and laminin in the collagen-based choriocarcinoma cultures is not dependent on an assembled network of type IV collagen.  相似文献   

20.
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号