首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
CMP-Neu5Gc has been shown to be transported into mouse liver Golgi vesicles by a specific carrier the characteristics of which were investigated in detail. In the system employed, CMP-Neu5Gc enters the Golgi vesicles within 2 min; transport was saturable with high concentrations of the sugar-nucleotide and was dependent on temperature. A kinetic analysis gave an apparent Km of 1.3 μM and a maximal transport velocity of 335 pmol/mg protein per min. Almost identical values were obtained with CMP-Neu5Ac, under the same incubation conditions. Furthermore, the uptake of CMP-Neu5Gc was inhibited by CMP-Neu5Ac, a substrate analogue. Conversely, the uptake of CMP-Neu5Ac was inhibited by CMP-Neu5Gc to the same extent, leading to the conclusion that the transport of CMP-Neu5Ac and CMP-Neu5Gc is mediated by the same carrier molecule. This transport system for CMP-Neu5Gc involves both CMP and CMP-Neu5Gc since intravesicular CMP induced the entry of external CMP-Neu5Gc.  相似文献   

2.
The relative contribution of N-glycoloyl-beta-D-neuraminic acid (Neu5Gc) to total sialic acids expressed in mouse and rat liver glycoconjugates was found to be 95% and 11%, respectively. This considerable difference in sialic acid composition made these two tissues suitable models for a comparative investigation into the regulation of Neu5Gc biosynthesis and utilization. An examination of the CMP-glycoside specificity of Golgi-associated sialyltransferases using CMP-N-acetyl-beta-D-neuraminic acid (CMP-Neu5Ac) and CMP-Neu5Gc revealed no significant tissue-dependent differences. The Golgi membrane CMP-sialic acid transport system from rat liver did, however, exhibit a slightly higher internalisation rate for CMP-Neu5Ac, though no preferential affinity for this sugar nucleotide over CMP-Neu5Gc was observed. In experiments, where Golgi membrane preparations were incubated with an equimolar mixture of labelled CMP-Neu5Ac and CMP-Neu5Gc, no significant tissue-dependent differences in [14C]sialic acid composition were observed, either in the luminal soluble sialic acid fraction or in the precipitable sialic acid fraction, results which are consistent with the above observations. From this experiment, evidence was also obtained for the presence of a Golgi-lumen-associated CMP--sialic acid hydrolase which exhibited no apparent specificity for either CMP-Neu5Ac or CMP-Neu5Gc. The specific activity of the CMP-Neu5Ac hydroxylase, the enzyme responsible for the biosynthesis of Neu5Gc, was found to be 28-fold greater in high-speed supernatants of mouse liver than of rat liver. No hydroxylase activity was detected in the Golgi membrane preparations. It is therefore proposed that the cytoplasmic ratio of CMP-Neu5Ac and CMP-Neu5Gc produced by the hydroxylase, remains largely unmodified after CMP-glycoside uptake into the Golgi apparatus and transfer on to growing glycoconjugate glycan chains. The close relationship between the total sialic acid composition and the sialic acid pattern in the CMP-glycoside pools of the tissues lends considerable weight to this hypothesis.  相似文献   

3.
N-Glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans and is developmentally regulated in rodents. We have explored the biology of N-acetylneuraminic acid hydroxylase, the enzyme responsible for conversion of the parent sialic acid, N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. We show that the major sialic acid in all compartments of murine myeloma cell lines is Neu5Gc. Pulse-chase analysis in these cells with the sialic acid precursor [6-3H]N-acetylmannosamine demonstrates that most of the newly synthesized Neu5Gc appears initially in the cytosolic low-molecular weight pool bound to CMP. The percentage of Neu5Gc on membrane-bound sialic acids closely parallels that in the CMP-bound pool at various times of chase, whereas that in the free sialic acid pool is very low initially, and rises only later during the chase. This implies that conversion from Neu5Ac to Neu5Gc occurs primarily while Neu5Ac is in its sugar nucleotide form. In support of this, the hydroxylase enzyme from a variety of tissues and cells converted CMP-Neu5Ac to CMP-Neu5Gc, but showed no activity towards free or alpha-glycosidically bound Neu5Ac. Furthermore, the majority of the enzyme activity is found in the cytosol. Studies with isolated intact Golgi vesicles indicate that CMP-Neu5Gc can be transported and utilized for transfer of Neu5Gc to glycoconjugates. The general properties of the enzyme have also been investigated. The Km for CMP-Neu5Ac is in the range of 0.6-2.5 microM. No activity can be detected against the beta-methylglycoside of Neu5Ac. On the other hand, inhibition studies suggest that the enzyme recognizes both the 5'-phosphate group and the pyrimidine base of the substrate. Taken together, the data allow us to propose pathways for the biosynthesis and reutilization of Neu5Gc, with initial conversion from Neu5Ac occurring primarily at the level of the sugar nucleotide. Subsequent release and reutilization of Neu5Gc could then account for the higher steady-state level of Neu5Gc found in all of the sialic acid pools of the cell.  相似文献   

4.
Rat liver Golgi and Saccharomyces cerevisiae-expressed CMP-Neu5Ac transport protein were reconstituted in phosphatidylcholine liposomes and transport of CMP-Neu5Ac into these proteoliposomes was determined. The separation of transported substrate from free substrate was performed using Multiscreen minicolumns loaded with Sephadex G-50 resin (fine). The CMP-Neu5Ac transport characteristics of the rat liver Golgi and S. cerevisiae-expressed transporters, determined using this separation system, were very similar to those previously reported. Inhibition studies, utilizing the above procedure, revealed that the main structural features required for recognition of glycosyl nucleosides by the rat liver Golgi CMP-Neu5Ac transport protein were the nature of the nucleoside base and the anomeric configuration of the associated carbohydrate. In general, pyrimidine-based glycosyl nucleosides were found to inhibit transport to a far greater extent than purine-based glycosyl nucleosides, an observation that is in good agreement with previous reports. These results indicate that the reconstitution procedure, in conjunction with Multiscreen minicolumns, is an effective high-throughput method for the determination of CMP-Neu5Ac transport.  相似文献   

5.
Recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells contain two forms of sialic acids; N-acetylneuraminic acid (Neu5Ac) as a major type and N-glycolylneuraminic acid (Neu5Gc) as a minor type. The Neu5Gc glycan moieties in therapeutic glycoproteins can elicit immune responses because they do not exist in human. In the present work, to reduce Neu5Gc levels of recombinant glycoproteins from CHO cell cultures, we coexpressed cytidine-5′-monophosphate-sialic acid transporter (CMP-SAT) that is an antiporter and transports cytosolic CMP-sialic acids (both forms) into Golgi lumen. When human erythropoietin was used as a target human glycoprotein, coexpression of CMP-SAT resulted in a significant decrease of Neu5Gc level by 41.4% and a notable increase of Neu5Ac level by 21.2%. This result could be reasonably explained by our hypothesis that the turnover rate of Neu5Ac to Neu5Gc catalyzed by CMP-Neu5Ac hydroxylase would be reduced through facilitated transportation of Neu5Ac into Golgi apparatus by coexpression of CMP-SAT. We confirmed the effects of CMP-SAT coexpression on the decrease of Neu5Gc level and the increase of Neu5Ac level using another glycoprotein human DNase I. Therefore, CMP-SAT coexpression might be an effective strategy to reduce the levels of undesired Neu5Gc in recombinant therapeutic glycoproteins from CHO cell cultures.  相似文献   

6.
BackgroundN-glycolylneuraminic acid (Neu5Gc) is generated by hydroxylation of CMP-Neu5Ac to CMP-Neu5Gc, catalyzed by CMP-Neu5Ac hydroxylase (CMAH). However, humans lack this common mammalian cell surface molecule, Neu5Gc, due to inactivation of the CMAH gene during evolution. CMAH is one of several human-specific genes whose function has been lost by disruption or deletion of the coding frame. It has been suggested that CMAH inactivation has resulted in biochemical or physiological characteristics that have resulted in human-specific diseases.Conclusions/SignificanceMice bearing a human-like deletion of the Cmah gene serve as an important model for the study of abnormal pathogenesis and/or metabolism caused by the evolutionary loss of Neu5Gc synthesis in humans.  相似文献   

7.
The finding that N-glycoloylneuraminic acid (Neu5Gc) in pig submandibular gland is synthesized by hydroxylation of the sugar nucleotide CMP-Neu5Ac [Shaw & Schauer (1988) Biol. Chem. Hoppe-Seyler 369, 477-486] prompted us to investigate further the biosynthesis of this sialic acid in mouse liver. Free [14C]Neu5Ac, CMP-[14C]Neu5Ac and [14C]Neu5Ac glycosidically bound by Gal alpha 2-3- and Gal alpha 2-6-GlcNAc beta 1-4 linkages to fetuin were employed as potential substrates in experiments with fractionated mouse liver homogenates. The only substrate to be hydroxylated was the CMP-Neu5Ac glycoside. The product of the reaction was identified by chemical and enzymic methods as CMP-Neu5Gc. All of the CMP-Neu5Ac hydroxylase activity was detected in the high-speed supernatant fraction. The hydroxylase required a reduced nicotinamide nucleotide [NAD(P)H] coenzyme and molecular oxygen for activity. Furthermore, the activity of this enzyme was enhanced by exogenously added Fe2+ or Fe3+ ions, all other metal salts tested having a negligible or inhibitory influence. This hydroxylase is therefore tentatively classified as a monooxygenase. The cofactor requirement and CMP-Neu5Ac substrate specificity are identical to those of the enzyme in high-speed supernatants of pig submandibular gland, suggesting that this is a common route of Neu5Gc biosynthesis. The relevance of these results to the regulation of Neu5Gc expression in sialoglycoconjugates is discussed.  相似文献   

8.
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.  相似文献   

9.
The membrane-bound sialyltransferase obtained from Escherichia coli K-235 grown in a chemically defined medium (ideal for colominic acid production) was studied. The in vivo half-life calculated for this enzyme was 20 h. Kinetic tests revealed (at 33 degrees C and pH 8.3) hyperbolic behaviour with respect to CMP-Neu5Ac (Km250 microM) and a transition temperature at 31.3 degrees C. The enzyme was inhibited by NH4+, some divalent cations and by several agents that react with thiol groups. Detergents and fatty acids also inhibited the sialyltransferase activity. In vitro synthesis of colominic acid is strongly inhibited by CMP by blocking the incorporation of [14C]Neu5Ac into a protein-complex intermediate and therefore into free polymer. CDP and CTP also inhibited (91% and 84%) this enzyme activity whereas cytosine and cytidine had no effect. CMP inhibition corresponded to a competitive model the calculated Ki was 30 microM. Incubations of protein[14C]Neu5Ac with CMP, CDP and CTP led to de novo synthesis of CMP-[14C]Neu5Ac. The presence of colominic acid, which usually displaces the reaction equilibrium towards polymer synthesis, did not affect this de novo CMP-[14C]Neu5Ac formation. CMP also inhibited in vivo colominic acid biosynthesis.  相似文献   

10.
The dominant glycosylation mutants of MDAY-D2 mouse lymphoma cells, designated class 2 (D33W25 and D34W25) were selected for their resistance to the toxic effects of wheat germ agglutinin (WGA) and shown to express elevated levels of Neu5Gc. In accordance with this, the activity of CMP-Neu5Ac hydroxylase was found to be substantially higher in the mutant cells. The hydroxylase in the D33W25 mutant cells exhibited kinetic properties identical to those of the same enzyme from mouse liver. Growth rate experimentsin vivo andin vitro, where the mutant cells grew more slowly at low cell densities in serum-free medium and also formed slower growing tumours in syngeneic mice, indicate that CMP-Neu5Ac hydroxylase expression may be associated with altered growth of the mutant cells.Abbreviations WGA wheat germ agglutinin - Neu5Ac N-acetyl--d-neuraminic acid - Neu5Gc N-glycology--d-neuraminic acid - CMP-Neu5Ac cytidine-5-monophospho-N-acetylneuraminic acid - CMP-Neu5Gc cytidine-5-monophospho-N-glycoloylneuraminic acid - FACS fluorescence-activated cell sorting - buffer A triethylamine hydrogen carbonate, pH 7.6 (concentration given at appropriate points in the text) - SFM serum free medium - IMDM Iscove's modified Dulbecco's medium - CMP-Neu5Ac hydroxylase CMP-N-acetylneuraminate: NAD(P)H oxido-reductase (N-acetyl hydroxylating) (EC 1.14.99.18); CMP-sialate hydrolase (EC 3.1.4.40); sialic acid-pyruvate lyase (EC 4.1.3.3)  相似文献   

11.
The sialic acid N-glycolylneuraminic acid (Neu5Gc) is formed by cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac) hydroxylase (EC 1.14.13.45). The enzyme from mammals exhibits several unusual characteristics, raising questions about its evolution. Since echinoderms are the most primitive organisms possessing glycoconjugate-bound Neu5Gc, studies on the hydroxylase from members of this phylum may yield insights into the origin and development of the hydroxylase. Investigations on crude CMP-Neu5Ac hydroxylase in gonads from the starfish Asterias rubens revealed that it shares many properties with its mammalian counterpart. However, the echinoderm hydroxylase also exhibits fundamental differences, particularly its association with a membrane and a requirement for high ionic strength for optimal activity. Here, we describe the isolation of the CMP-Neu5Ac hydroxylase from A. rubens gonads using anion exchange chromatography and chromatography on immobilized cytochrome b(5). The enzyme was enriched 137-fold with a yield of 13%. The preparation exhibited a main polypeptide of 76 kDa, consistent with a cDNA sequence published earlier, and a minor protein of 64 kDa. A kinetic characterization showed that salt activation of this enzyme results from an increase in affinity for CMP-Neu5Ac. Evidence for the formation of a ternary complex of hydroxylase, CMP-Neu5Ac and cytochrome b(5) is also presented. The mechanistic and physiological significance of these results is discussed.  相似文献   

12.
The architectural conservation of nucleotide sugar transport proteins (NSTs) enabled the theoretical prediction of putative NSTs in diverse gene databases. In the human genome, 17 NST sequences have been identified but only six have been unequivocally characterized with respect to their transport specificities. Defining transport characteristics of recombinant NSTs has become a major challenge because true zero background systems are widely absent. Production of recombinant NSTs in heterologous systems has developed multifunctionality for some NSTs leading to a novel level of complexity in the field. Assuming that (1) the specificity of NSTs is determined at the primary sequence level and (2) the proteins are autonomously functional units, final definition of the substrate specificity will depend on the use of isolated transport proteins. Herein, we describe the first report of the functional expression of mouse CMP-sialic acid transporter (CST) in Escherichia coli and thus provide significant progress towards the production of transporter proteins in quantities suitable for functional and structural analyses. Recovery of the active NST from inclusion bodies was achieved after solubilization with 8 M urea and stepwise renaturation. After reconstitution into phospholipid vesicles, the recombinant protein demonstrated specific transport for CMP-N-acetylneuraminic acid (CMP-Neu5Ac) with no transport of UDP-sugars. Kinetic studies carried out with CMP-Neu5Ac and established CMP-Neu5Ac antagonist's evaluated natural conformation of the reconstituted protein and clearly demonstrate that the transporter acts as a simple mobile carrier.  相似文献   

13.
N-Glycoloylneuraminic acid (Neu5Gc) is synthesized as its CMP-giycosideby the action of CMPN-acetylneuramlnic acid (CMP-Neu5Ac) hydroxylase.This enzyme is a soluble cytochrome bs-dependent monooxygenaseand has been purified to apparent homogeneity from pig submandibularglands by precipitation with N-cetyN,N,N-trimethylam-moniumbromide and fractionation on Q-Sepharose, Cibacron Blue 3GA-Agarose,Reactive Brown 10-Agarose, Hexyl-Agarose and Superose S.12.This procedure resulted in an 8960-fold purification of thehydroxylase with a recovery of 0.8%. The molecular mass of thisprotein was shown to be 65 kDa on SDS-PAGE and 60 kDa as determinedby gel filtration on Superose S.12, which suggests that theenzyme is a monomer. The purified CMP-Neu5Ac hydroxylase isactivated by FeSO4 and inhibited by iron-binding reagents suchas o-phenanthroline, KCN, Tiron and ferro-zine. An apparentKm of 11 µM was determined for the substrate CMP-Neu5Acusing purified hydroxylase in the presence of Triton X-100-solubilizedmicrosomes. In a reconstituted system consisting of purifiedhydroxylase, cytochrome b5, cytochrome b5 reductase and catalase,an apparent Km of 3 µM was measured. The apparent Kmforcytochrome b5 in this system was 0.24 µM. Immunizationof a rabbit with enriched and purified hydroxylase led to anantiserum that inhibited CMP-Neu5Ac hydroxylase activity andreacted with the purified 65 kDa protein on a Western blot afterSDS-PAGE. Antibodies specific for this 65 kDa protein were isolatedand showed a strong reaction with the purified CMP-Neu5Ac hydroxylasefrom mouse liver after immunoblotting. Initial experiments withthis monospecific antibody suggest that the activity of thehydroxylase in a particular tissue correlates with the amountof immuno-reactive protein. cytochrome b5 N-glcoloylneuraminic acid hydroxylase pig submandibular gland mucin sialic acid  相似文献   

14.
Rodent cells, widely used for the industrial production of recombinant human glycoproteins, possess CMP-N-acetylneuraminic acid hydroxylase (CMP-Neu5Ac hydroxylase; EC 1.14.13.45) which is the key enzyme in the formation of the sialic acid, N-glycolylneuraminic acid (Neu5Gc). This enzyme is not expressed in an active form in man and evidence suggests that the presence of Neu5Gc in recombinant therapeutic glycoproteins may elicit an immune response. The aim of this work was, therefore, to reduce CMP-Neu5Ac hydroxylase activity in a Chinese Hamster Ovary (CHO) cell line, and thus the Neu5Gc content of the resulting glycoconjugates, using a rational antisense RNA approach. For this purpose, the cDNA of the hamster hydroxylase was partially cloned and sequenced. Based on the sequence of the mouse and hamster cDNAs, optimal antisense RNA fragments were selected from preliminary in vitro translation tests. Compared to the parental cell line, the new strain (CHO-AsUH2), which was transfected with a 199-bp antisense fragment derived from the mouse CMP-Neu5Ac hydroxylase cDNA, showed an 80% reduction in hydroxylase activity. An analysis of the sialic acids present in the cells' own glycoconjugates revealed a decrease in the percentage of Neu5Gc residues from 4% in the parental cells to less than 1% in the CHO-AsUH2 cell line.  相似文献   

15.
The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.  相似文献   

16.
The sialic acid N-glycolylneuraminic acid (Neu5Gc) is synthesized by the action of CMP-Neu5Ac hydroxylase. The enzyme from various mammals has been purified, characterized and sequenced by cDNA cloning. Although functional sequence motifs can be postulated from comparisons with several enzymes, no global homologies to any other proteins have been found. The unusual characteristics of this hydroxylase raise questions about its evolution. As echinoderms are phylogenetically the oldest organisms possessing Neu5Gc, they represent a starting point for investigations on the origin of this enzyme. Despite many similarities with its mammalian counterpart, CMP-Neu5Ac hydroxylase from the starfish A. rubens exhibits fundamental differences, most notably its association with a membrane and a requirement for high ionic strength. In order to shed light on the structural basis for these differences, the primary structure of CMP-Neu5Ac hydroxylase from A. rubens has been determined by PCR and cDNA-cloning techniques, using initial sequence information from the mouse enzyme. The complete assembled cDNA contained an ORF coding for a protein of 653 amino acids with a molecular mass of 75 kDa. The deduced amino-acid sequence exhibited a high degree of homology with the mammalian enzyme, although the C-terminus was some 60 residues longer. This extension consists of a terminal hydrophobic region, which may mediate membrane-binding, and a preceding hydrophilic sequence which probably serves as a hinge or linker. The identity of the ORF was confirmed by expression of active CMP-Neu5Ac hydroxylase in E. coli at low temperatures.  相似文献   

17.
The biosynthesis of the sialic acid N-glycolylneuraminic acid (Neu5Gc) occurs by the action of cytidine monophosphate-N-acetylneuraminate (CMP-Neu5Ac) hydroxylase. Previous investigations on a limited number of tissues suggest that the activity of this enzyme governs the extent of glycoconjugate sialylation with Neu5Gc. Using improved analytical procedures and a panel of nine porcine tissues, each expressing different amounts of Neu5Gc, we have readdressed the issue of the regulation of Neu5Gc incorporation into glycoconjugates. The following parameters were measured for each tissue: the molar ratio Neu5Gc/Neu5Ac, the activity of the hydroxylase, and the relative amount of hydroxylase protein, as determined by enzyme-linked immunosorbent assay (ELISA). A positive correlation between the activity of the hydroxylase and the molar ratio Neu5Gc/Neu5Ac was observed for each tissue. In addition, the hydroxylase activity correlated with the amount of enzyme protein, though in heart and lung disproportionately large amounts of immunoreactive protein were detected. Taken together, the results suggest that the incorporation of Neu5Gc into glycoconjugates is generally controlled by the amount of hydroxylase protein expressed in a tissue.  相似文献   

18.
The uptake and efflux of cyclic adenosine 3',5'-monophosphate (3',5'-cAMP) by Escherichia coli membrane vesicles were studied. Metabolic energy was not required for the uptake process and was found to actually decrease the amount of 3',5'-cAMP found in the vesicles. 3',5'-cAMP uptake exhibits saturation kinetics (Km = 10 mM, Vmax = 2.8 nmol/mg of protein per min) and was competitively inhibited by a number of 3',5'-cAMP analogs. The uptake of 3',5'-cAMP was found to be sharply affected by a membrane phase transition. The excretion of 3',5'-cAMP was studied by using everted membrane vesicles. Efflux in this system was dependent upon metabolic energy and was reduced or abolished by uncouplers. Different energy sources powered efflux at different rates, showing a relationship between the degree of membrane energization and rate of excretion of 3',5'-cAMP. The efflux process also displayed saturation kinetics (Km = 10.0 mM, Vmax = 0.98 nmol/mg of protein per min) and was competitively inhibited by the same 3',5'-cAMP analogs and to the same degree as was the uptake process. 3',5'-cAMP was found to be chemically unaltered by both the uptake and excretion processes. These data are interpreted as showing that the uptake and excretion of 3',5'-cAMP in E. coli membrane vesicles are carrier-mediated phenomena, possibly employing the same carrier system. Uptake is by facilitated diffusion whereas efflux is via an energy-dependent, active transport process. Evidence is presented showing that cells can regulate the number of 3',5'-cAMP transport carriers. The rate of 3',5'-cAMP excretion is possibly regulated by both the degree of membrane energization and the number of carriers present per cells.  相似文献   

19.
N-Glycolylneuraminic acid in human tumours   总被引:6,自引:0,他引:6  
Malykh YN  Schauer R  Shaw L 《Biochimie》2001,83(7):623-634
N-Glycolylneuraminic acid (Neu5Gc) is an abundant sialic acid, occurring in the glycoconjugates of most deuterostome animals. Homo sapiens is a notable exception, since Neu5Gc is effectively absent from normal human tissues. This is due to a deletion in the human gene coding for CMP-Neu5Ac hydroxylase, the enzyme usually responsible for Neu5Gc biosynthesis. Despite this mutation, persistent reports in the literature suggest that Neu5Gc occurs in the glycoconjugates of many human tumours, where it might be responsible for the formation of so-called Hanganutziu-Deicher antibodies. However, the variety of systems studied and the various experimental approaches adopted have yielded a complex picture of Neu5Gc occurrence in human neoplasias. The aim of this paper is therefore to provide a critical review of the evidence for Neu5Gc in human tumours, paying particular attention to the analytical methods employed. The possible clinical applications of Neu5Gc-containing glycoconjugates and Hanganutziu-Deicher antibodies in the diagnosis and treatment of breast cancer and melanoma are also discussed. In view of the lack of CMP-Neu5Ac hydroxylase in human cells, alternative metabolic pathways for the biosynthesis of glycoconjugate-bound Neu5Gc are considered.  相似文献   

20.
The sialic acids are major components of the cell surfaces of animals of the deuterostome lineage. Earlier studies suggested that humans may not express N-glycolyl-neuraminic acid (Neu5Gc), a hydroxylated form of the common sialic acid N-acetyl-neuraminic acid (Neu5Ac). We find that while Neu5Gc is essentially undetectable on human plasma proteins and erythrocytes, it is a major component in all the four extant great apes (chimpanzee, bonobo, gorilla and orangutan) as well as in many other mammals. This marked difference is also seen amongst cultured lymphoblastoid cells from humans and great apes, as well as in a variety of other tissues compared between humans and chimpanzees, including the cerebral cortex and the cerebrospinal fluid. Biosynthetically, Neu5Gc arises from the action of a hydroxylase that converts the nucleotide donor CMP-Neu5Ac to CMP-Neu5Gc. This enzymatic activity is present in chimpanzee cells, but not in human cells. However, traces of Neu5Gc occur in some human tissues, and others have reported expression of Neu5Gc in human cancers and fetal tissues. Thus, the enzymatic capacity to express Neu5Gc appears to have been suppressed sometime after the great ape-hominid divergence. As terminal structures on cell surfaces, sialic acids are involved in intercellular cross-talk involving specific vertebrate lectins, as well as in microbe-host recognition involving a wide variety of pathogens. The level of sialic acid hydroxylation (level of Neu5Ac versus Neu5Gc) is known to positively or negatively affect several of these endogenous and exogenous interactions. Thus, there are potential functional consequences of this widespread structural change in humans affecting the surfaces of cells throughout the body. Am J Phys Anthropol 107:187-198, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号