首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behaviour of simple population models under ecological processes   总被引:1,自引:0,他引:1  
The two most popular and extensively-used discrete models of population growth display the generic bifurcation structure of a hierarchy of period-doubling sequence to chaos with increasing growth rates. In this paper we show that these two models, though they belong to a general class of one-dimensional maps, show very different dynamics when important ecological processes such as immigration and emigration/depletion, are considered. It is important that ecologists recognize the differences between these models before using them to describe their data—or develop optimization strategies—based on these models.  相似文献   

2.
The period-doubling route to chaos has occupied a prominent position and it is still object of great interest among the different complex phenomena observed in nonlinear dynamical systems. The reason of such interest is that such route to chaos has been observed in many physical, chemical and ecological models when they change over from simple periodic to complex aperiodic motion. In interlinked social–ecological systems (SESs) there might be an apparent great ability to cope with change and adapt if analysed only in their social dimension. However, such an adaptation may be at the expense of changes in the capacity of ecosystems to sustain the adaptation and it could affect the quality of ecosystem goods and services since it could degrade natural renewable and non-renewable resources and generate traps and breakpoints in the whole SES eventually leading to chaotic behaviour. This paper is rooted in previous results on modelling tourism-based SESs, only recently object of theoretical investigations, focusing on the dynamics of the coexistence between mass-tourists and eco-tourists. Here we describe a finer scale analysis of time-dependent regimes in the ranges of the degradation coefficient (bifurcation parameter), for which the system can exhibit coexistence. This bifurcation parameter is determined by objective changes in the real world in the quality of ecosystem goods and services together with whether and how such changes are perceived by different tourist typologies. Varying the bifurcation parameter, the dynamical system may in fact evolve toward an aperiodical dynamical state in many ways, showing that there could be different scenarios for the transition to chaos. This paper provides a further evidence for the period-doubling route to chaos with reference to tourism-based socio-ecological models, and for a period locking behaviour, where a small variation in the bifurcation parameter can lead to alternating regular and chaotic dynamics. Moreover, for many models undergoing chaos via period-doubling, it has been showed that structural perturbations with real ecological justification, may break and reverse the expected period-doublings, hence inhibiting chaos. This feature may be of a certain relevance also in the context of adaptive management of tourism-based SESs: these period-doubling reversals might in fact be used to control chaos, since they potentially act in way to suppress possibly dangerous fluctuations.  相似文献   

3.
Period-doubling bifurcation to chaos were discovered in spontaneous firings of Onchidium pacemaker neurons. In this paper, we provide three cases of bifurcation processes related to period-doubling bifurcation cascades to chaos observed in the spontaneous firing patterns recorded from an injured site of rat sciatic nerve as a pacemaker. Period-doubling bifurcation cascades to period-4 (π(2,2)) firstly, and then to chaos, at last to a periodicity, which can be period-5, period-4 (π(4)) and period-3, respectively, in different pacemakers. The three bifurcation processes are labeled as case I, II and III, respectively, manifesting procedures different to those of period-adding bifurcation. Higher-dimensional unstable periodic orbits (UPOs) can be detected in the chaos, built close relationships to the periodic firing patterns. Case III bifurcation process is similar to that discovered in the Onchidium pacemaker neurons and simulated in theoretical model-Chay model. The extra-large Feigenbaum constant manifesting in the period-doubling bifurcation process, induced by quasi-discontinuous characteristics exhibited in the first return maps of both ISI series and slow variable of Chay model, shows that higher-dimensional periodic behaviors appeared difficult within the period-doubling bifurcation cascades. The results not only provide examples of period-doubling bifurcation to chaos and chaos with higher-dimensional UPOs, but also reveal the dynamical features of the period-doubling bifurcation cascades to chaos.  相似文献   

4.
 In most models of population dynamics, increases in population due to birth are assumed to be time-independent, but many species reproduce only during a single period of the year. We propose a single-species model with stage structure for the dynamics in a wild animal population for which births occur in a single pulse once per time period. Using the discrete dynamical system determined by the stroboscopic map, we obtain an exact periodic solution of systems which are with Ricker functions or Beverton-Holt functions, and obtain the threshold conditions for their stability. Above this threshold, there is a characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that the dynamical behaviors of the single species model with birth pulses are very complex, including small-amplitude annual oscillations, large-amplitude multi-annual cycles, and chaos. This suggests that birth pulse, in effect, provides a natural period or cyclicity that allows for a period-doubling route to chaos. Received: 13 June 2001 / Revised version: 7 September 2001 / Published online: 8 February 2002  相似文献   

5.
It is known from many theoretical studies that ecological chaos may have numerous significant impacts on the population and community dynamics. Therefore, identification of the factors potentially enhancing or suppressing chaos is a challenging problem. In this paper, we show that chaos can be enhanced by the Allee effect. More specifically, we show by means of computer simulations that in a time-continuous predator-prey system with the Allee effect the temporal population oscillations can become chaotic even when the spatial distribution of the species remains regular. By contrast, in a similar system without the Allee effect, regular species distribution corresponds to periodic/quasi-periodic oscillations. We investigate the routes to chaos and show that in the spatially regular predator-prey system with the Allee effect, chaos appears as a result of series of period-doubling bifurcations. We also show that this system exhibits period-locking behaviour: a small variation of parameters can lead to alternating regular and chaotic dynamics.  相似文献   

6.
We illustrate that an autonomous ordinary differential equation model for malaria transmission can exhibit period-doubling bifurcations leading to chaos when ecological aspects of malaria transmission are incorporated into the model. In particular, when demography, feeding, and reproductive patterns of the mosquitoes that transmit the malaria-causing parasite are explicitly accounted for, the resulting model exhibits subcritical bifurcations, period-doubling bifurcations, and chaos. Vectorial and disease reproduction numbers that regulate the size of the vector population at equilibrium and the endemicity of the malaria disease, respectively, are identified and used to simulate the model to show the different bifurcations and chaotic dynamics. A subcritical bifurcation is observed when the disease reproduction number is less than unity. This highlights the fact that malaria control efforts need to be long lasting and sustained to drive the infectious populations to levels below the associated saddle-node bifurcation point at which control is feasible. As the disease reproduction number increases beyond unity, period-doubling cascades that develop into chaos closely followed by period-halving sequences are observed. The appearance of chaos suggests that characterization of the physiological status of disease vectors can provide a pathway toward understanding the complex phenomena that are known to characterize the dynamics of malaria and other indirectly transmitted infections of humans. To the best of our knowledge, there is no known unforced continuous time deterministic host-vector transmission malaria model that has been shown to exhibit chaotic dynamics. Our results suggest that malaria data may need to be critically examined for complex dynamics.  相似文献   

7.
Chaos in multi-looped negative feedback systems   总被引:1,自引:0,他引:1  
Non-linear control systems with multiple negative feedback loops display periodicity, quasiperiodicity and period-doubling bifurcations leading to chaos. The possibility that normal fluctuations in physiological control may result from deterministic chaos in multi-looped negative feedback systems is discussed.  相似文献   

8.
The recent paper of Sinha and Parthasarathy investigated the effect of modifying the Ricker and logistic population models to simulate the effects of immigration to, and emigration from, the population. Immigration of a fixed number of individuals was shown to reduce the probability of observing chaos in the Ricker model but not the logistic one. Here, isocline analysis is used to investigate why these effects occur. The stabilization effect for the Ricker equation occurs over a wide range of values of the immigration parameter. There are no values of the parameter, however, which increase the stability of the logistic equation substantially. In contrast density-dependent immigration is found to destabilize both the Ricker and logistic models. Density-dependent emigration serves to reduce the propensity of both models to exhibit chaos.  相似文献   

9.
10.
The presence of infectious diseases can dramatically change the dynamics of ecological systems. By studying an SI-type disease in the predator population of a Rosenzweig–MacArthur model, we find a wealth of complex dynamics that do not exist in the absence of the disease. Numerical solutions indicate the existence of saddle–node and subcritical Hopf bifurcations, turning points and branching in periodic solutions, and a period-doubling cascade into chaos. This means that there are regions of bistability, in which the disease can have both a stabilising and destabilising effect. We also find tristability, which involves an endemic torus (or limit cycle), an endemic equilibrium and a disease-free limit cycle. The endemic torus seems to disappear via a homoclinic orbit. Notably, some of these dynamics occur when the basic reproduction number is less than one, and endemic situations would not be expected at all. The multistable regimes render the eco-epidemic system very sensitive to perturbations and facilitate a number of regime shifts, some of which we find to be irreversible.  相似文献   

11.
 We modify a simple mathematical model for natural selection originally formulated by Robert M. May in 1983 by permitting one homozygote to have a larger selective advantage when rare than the other, and show that the new model exhibits dynamical chaos. We determine an open region of parameter space associated with homoclinic points, and prove that there are infinite sequences of period-doubling bifurcations along selected paths through parameter space. We also discuss the possibility of chaos arising from imbalance in the homozygote fitnesses in more realistic biological situations, beyond the constraints of the model. Received 3 February 1995; received in revised form 1 November 1995  相似文献   

12.
Many simple population models exhibit the period doubling route to chaos as a single parameter, commonly the growth rate, is increased. Here we examine the effect of an immigration process on such models and explain why in the case of one-dimensional ("single-humped") maps, immigration often tends to suppress chaos and stabilise equilibrium behaviour or cyclical oscillations of long period. The conditions for which an increase of immigration "simplifies" population dynamics are examined.  相似文献   

13.
Simple discrete time models of population growth admit a wide variety of dynamic behaviors, including population cycles and chaos. Yet studies of natural and laboratory populations typically reveal their dynamics to be relatively stable. Many explanations for the apparent rarity of unstable or chaotic behavior in real populations have been developed, including the possible stabilizing roles of migration, refugia, abrupt density-dependence, and genetic variation in sensitivity to density. We develop a theoretical framework for incorporating random spatial variation in density into simple models of population growth, and apply this approach to two commonly used models in ecology: the Ricker and Hassell maps. We show that the incorporation of spatial density variation into both these models has a strong stabilizing influence on their dynamic behavior, and leads to their exhibiting stable point equilibria or stable limit cycles over a relatively much larger range of parameter values. We suggest that one reason why chaotic population dynamics are less common than the simple models indicate is, these models typically neglect the potentially stabilizing role of spatial variation in density.  相似文献   

14.
 The paper investigates the discrete frequency dynamics of two phenotype diploid models where genotypic fitness is an exponential function of the expected payoff in the matrix game. Phenotypic and genotypic equilibria are defined and their stability compared to frequency-dependent selection models based on linear fitness when there are two possible phenotypes in the population. In particular, it is shown that stable equilibria of both types can exist in the same nonlinear model. It is also shown that period-doubling bifurcations emerge when there is sufficient selection in favor of interactions between different phenotypes. Received: 22 October 1998  相似文献   

15.
研究了一个具有脉冲出生的Leslie-Gower捕食者一食饵系统的动力学性质.利用频闪映射。得到了带有Ricker和Beverton-Holt函数的脉冲系统准确的周期解.通过Floquet定理和脉冲比较定理,讨论了该系统的灭绝和持久生存.最后,数值分析了以b(p)为分支参数的分支图,得到的结论是脉冲出生会带给系统倍周期分支、混沌以及在混沌带中出现周期窗口等复杂的动力学行为.  相似文献   

16.
Some of the properties of the delay-differential equation dX(t)dt = R(X(t ? τ)) ? D(X(t)), where R and D represent the rates of recruitment to, and death from, an adult population of size X, with maturation period τ are examined. The biological constraints upon these recruitment and death functions are specified, and they are used to establish results on stability, boundedness, and persistent fluctuations of limit cycle type. The relationship between models based on delay-differential and difference equations is then explored, and it is shown how well-established results on period-doubling and chaotic behaviour in the latter can yield insight into the qualitative dynamics of the former. Using numerical studies of two population models with differing forms of recruitment function, we show how, by making use of our results, it is possible to simplify the analysis of delay-differential equation population models.  相似文献   

17.
Can noise induce chaos?   总被引:5,自引:0,他引:5  
An important component of the mathematical definition of chaos is sensitivity to initial conditions. Sensitivity to initial conditions is usually measured in a deterministic model by the dominant Lyapunov exponent (LE), with chaos indicated by a positive LE. The sensitivity measure has been extended to stochastic models; however, it is possible for the stochastic Lyapunov exponent (SLE) to be positive when the LE of the underlying deterministic model is negative, and vice versa. This occurs because the LE is a long-term average over the deterministic attractor while the SLE is the long-term average over the stationary probability distribution. The property of sensitivity to initial conditions, uniquely associated with chaotic dynamics in deterministic systems, is widespread in stochastic systems because of time spent near repelling invariant sets (such as unstable equilibria and unstable cycles). Such sensitivity is due to a mechanism fundamentally different from deterministic chaos. Positive SLE's should therefore not be viewed as a hallmark of chaos. We develop examples of ecological population models in which contradictory LE and SLE values lead to confusion about whether or not the population fluctuations are primarily the result of chaotic dynamics. We suggest that "chaos" should retain its deterministic definition in light of the origins and spirit of the topic in ecology. While a stochastic system cannot then strictly be chaotic, chaotic dynamics can be revealed in stochastic systems through the strong influence of underlying deterministic chaotic invariant sets.  相似文献   

18.
Integrodifference equations may be used as models of populations with discrete generations inhabiting continuous habitats. In this paper integrodifference equation models are formulated for annual plant populations without a seed bank; these models differ in the stage of the life cycle at which intraspecific competition acts to reduce vital rates. The models exhibit a sequence of period-doubling bifurcations leading to chaotic spatial and temporal behavior. The behavior of the models when modal dispersal distances are at the origin is compared with their behavior when these distances are displaced away from the origin. The models are capable of predicting stable, cyclical, and chaotic asymptotic behavior. They also predict that the variance of dispersal distances is an important indicator of the colonizing ability of a species.  相似文献   

19.
Singh BK  Parham PE  Hu CK 《PloS one》2011,6(9):e24200
BACKGROUND: Simple models of insect populations with non-overlapping generations have been instrumental in understanding the mechanisms behind population cycles, including wild (chaotic) fluctuations. The presence of deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real population data. This approach is based on structural perturbations to simple population models (population skeletons). The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size and direction) through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium type, which fails to commensurate with the patterns observed in population data. METHODOLOGY/PRINCIPAL FINDINGS: We present a proportional feedback mechanism that is independent of model formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to chaotic behaviour, across different population models, in agreement with observations in real population data. Model outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback mechanism may enable a better understanding of the regulatory processes in natural populations.  相似文献   

20.
 In this paper, we identify a mechanism for chaos in the presence of noise. In a study of the SEIR model, which predicts epidemic outbreaks in childhood diseases, we show how chaotic dynamics can be attained by adding stochastic perturbations at parameters where chaos does not exist apriori. Data recordings of epidemics in childhood diseases are still argued as deterministic chaos. There also exists noise due to uncertainties in the contact parameters between those who are susceptible and those who are infected, as well as random fluctuations in the population. Although chaos has been found in deterministic models, it only occurs in parameter regions that require a very large population base or other large seasonal forcing. Our work identifies the mechanism whereby chaos can be induced by noise for realistic parameter regions of the deterministic model where it does not naturally occur. Received: 13 October 2000 / Revised version: 15 May 2001 / Published online: 7 December 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号