首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis Relatively little is known of the pelagic portion of the life history of butterflyfishes. Eggs are small (<1 mm), pelagic and hatch in less than 30 hours. Most species pass through a so-called tholichthys larval interval characterized by elaborate, distinctive head spination:Coradion larvae have different head spination. While older chaetodontid larvae can be identified by adult characters, young (preflexion) larvae generally cannot now be identified below family. In tropical plankton studies chaetodontid larvae averaged <0.1% of larvae captured, and occurred in 13% of samples. This rarity is a major hindrance to further work, but is not unexpected in view of adult abundance. Larvae of a few taxa are most abundant in shelf waters, but larvae of many chaetodontid taxa seem to be most abundant in oceanic waters. In either case, waters near reefs have the fewest chaetodontid larvae. Offshore maxima of larvae appear to exist a few kilometers seaward of Great Barrier Reef ribbon reefs. Chaetodontid larvae may prefer the upper portion of the water column. Both size and age at settlement vary widely within the family and the large genusChaetodon, and the latter varies widely within species. Average size at settlement is less than 20 mm and age is less than 40 days. No correlation was found between size and age at settlement. Behaviour and feeding of chaetodontid larvae are essentially unstudied. Chaetodontid larvae seem to be least abundant in winter. The implications of these conclusions are discussed and some suggestions for further research are made. In all areas more work is needed.  相似文献   

2.
The tortoise tick Hyalomma aegyptium has a typical three-host life-cycle. Whereas its larvae and nymphs are less host-specific feeding on a variety of tetrapods, tortoises of the genus Testudo are principal hosts of adults. Ticks retained this trait also in our study under laboratory conditions, while adults were reluctant to feed on mammalian hosts. Combination of feeding larvae and nymphs on guinea pigs and feeding of adults on Testudo marginata tortoises provided the best results. Feeding period of females was on average 25 days (range 17–44), whereas males remain after female engorgement on tortoise host. Female pre-oviposition period was 14 days (3–31), followed by 24 days of oviposition (18–29). Pre-eclosion and eclosion, both together, takes 31 days (21–43). Larvae fed 5 days (3–9), then molted to nymphs after 17 days (12–23). Feeding period of nymphs lasted 7 days (5–10), engorged nymphs molted to adults after 24 days (19–26). Sex ratio of laboratory hatched H. aegyptium was nearly equal (1:1.09). The average weight of engorged female was 0.95 (0.72–1.12) g. The average number of laid eggs was 6,900 (6,524–7,532) per female, it was significantly correlated with weight of engorged female. Only 2.8% of engorged larvae and 1.8% of engorged nymphs remained un-molted and died. Despite the use of natural host species, feeding success of females reached only 45%. The whole life-cycle was completed within 147 days (98–215).  相似文献   

3.
Larval behaviour is important to dispersal and settlement, but is seldom quantified. Behavioural capabilities of larval Lutjanus carponotatus in both offshore pelagic and reef environments at Lizard Island, Great Barrier Reef were observed in situ to determine if they were sufficient to influence dispersal. Offshore, larvae swam with higher directional precision and faster on the windward side of the island (28 cm.s−1) than on the leeward side (16 cm s−1). Most larvae swam directionally. Mean swimming directions were southerly in the windward area and northerly in the leeward area. Larvae avoided the surface and remained mostly between 3–15 m. Larvae released near reefs were 2–3 times faster swimming away from reefs (19 cm s−1) than swimming toward or over them (6–8 cm s−1). Speed swimming away was similar to that offshore. Of 41 larvae released near reefs, 73% reached the reef, 59% settled, and 13% of those reaching the reef were eaten. Larvae settled onto hard and soft coral (58%), topographic reef features (29%) and sand and rubble (13%). Settlement depth averaged 5.5 m (2–8 m). Before settling larvae spent up to 800 s over the reef (mean 231 s) and swam up to 53 m (mean 14 m). About half of the larvae interacted with reef residents including predatory attacks and aggressive approaches by residents and aggressive approaches by settling larvae. Settlement behaviour of L. carponotatus was more similar to a serranid than to pomacentrids. Settlement-stage larvae of L. carponotatus are behaviourally capable, and have a complex settlement behaviour.  相似文献   

4.
Synopsis Ten early premetamorphic bonefish (Albula sp.) leptocephali were collected in MOCNESS plankton tows in the Guaymas Basin area of the Gulf of California from 27 July–1 August, 1985. Initial captures of five larvae showed that these were found only in surface waters (0–100 m) at temperatures of 15–29° C. A shallow tow made from 200 m to the surface resulted in the capture of five additional larvae that were distributed in the upper 50 m of the water column at temperatures of 21–29° C. Both pre-flexion larvae (<17.0 mm notochord length, NL) and larvae with flexed notochords were captured. The size range was from 12.0 mm NL to 27.0 mm standard length. Drawings of representative larvae are given. This is apparently the first report of premetamorphic bonefish larvae for the Gulf, although metamorphic larvae have been known to be abundant in coastal areas of this region for almost 100 years. Distribution records for metamorphic larvae are reviewed. This, together with observations on seasonal distribution of ripe adults in coastal waters near Guaymas, Sonora, Mexico, has allowed us to speculate on various aspects of life history. Our data suggest that spawning occurs during late spring and summer and that early development takes place offshore. The premetamorphic interval is postulated to last approximately 6–7 months. Larvae then return to coastal areas during the winter and spring to complete metamorphosis.  相似文献   

5.
Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5–15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15–30). In the latter, survival ranged from 80–95% and development took 10–11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval ‘export’ strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.  相似文献   

6.
Butterflyfishes (Chaetodontidae) from the reefs of Ly Son Archipelago (northern Central Vietnam) are reviewed. In total, 16 species of chaetodontids from three genera (Chaetodon, Forcipiger, and Heniochus) are found. All species are documented by underwater photos, and they have not been registered off Ly Son Islands before. A comparison of chaetodontid faunas off Ly Son, Cu Lao Cham, and Paracel islands; in the Gulf of Tonkin; and in southern Central Vietnam is conducted.  相似文献   

7.
Recently, a study reported that magnesium played a part in the attack of chronic diseases, such as arteriosclerosis, diabetes, metabolic syndrome, and hypertension. However, there are not even enough studies to evaluate magnesium intakes. Therefore, in this study, we evaluated the magnesium intakes of 500 healthy adults. In addition, by selecting 50 targets, we examined the correlation between magnesium intake and antioxidant capacity biomarkers. In the age group of 19–29, the daily magnesium intake was 276.3 mg for males and 232.1 mg for females. In the age group of 30–49, it was 305.1 mg and 246.5 mg, respectively. In the age group of 50–64, the magnesium intake was 294.4 mg for males and 245.7 mg for females. As for the age group of 19–29, the magnesium intake per 4,187 kJ of energy intake was 129.8 mg, which was significantly lower than the 164.6 mg by the age group of 30–49 and 172.4 mg by the age group of 50–64. The ratio of magnesium intake to the recommended intake was 82.1% for those in the age group of 19–29, 87.7% for those in 30–49, and 86.1% for those in 50–64. The rate of the subjects with magnesium intakes lower than the estimated average requirement was 55.3% in the age group of 19–29, 52.4% in 30–49, and 54.2% in 50–64. The magnesium intake from food groups were in the descending order of vegetables, cereals, and fish for the subjects in the age group of 19–29, and vegetables, cereals, and beverages for the subjects in the age groups of 30–49 and 50–64. The source food items of magnesium intake were in the descending order of Kimchi, tofu, rice, and coffee in the age group of 19–29, coffee, Kimchi, tofu, and rice in 30–49, and coffee, Kimchi, rice, and tofu in 50–64. From the 50 targets aged 19–29, significant correlation was not indicated among magnesium intake, serum magnesium, and antioxidant capacity biomarkers. In conclusion, the magnesium intake status of some Korean adults is unsatisfactory. And it is suggested that this low intake of magnesium has no correlation with antioxidant capacity.  相似文献   

8.
Mnemiopsis leidyi: larvae depend on microplankton (<200 µm) prey duringthe first few days following hatching until larvae are >0.5mm in length and can successfully capture and consume mesozooplanktonprey. Feeding and growth rates of newly hatched M. leidyi larvaewere measured in controlled laboratory experiments. When fednatural microplankton assemblages, newly hatched larvae consumedsignificant quantities of both autotrophic and heterotrophicprey, including diatoms, phototrophic, heterotrophic and mixotrophicdinoflagellates, euglenoid flagellates, aloricate and tintinnidciliates, and rotifers. Average per capita clearance rates were1.99–7.59 mL individual–1 h–1 ( = 4.01 mL individual–1 h–1; SD = 1.95)and total per capita ingestion was 0.01–4.70 µgC individual–1 day–1 x 102 ( = 0.83 µg C individual–1 day–1 x 102; SD =1.89). Larval growth rates were –0.13 to 0.56 mm individual–1day–1 (equivalent to –1.72 to 4.33 µg C individual–1day–1) over a range of larval sizes from 0.5 (<0.5µg C) to 5 mm (85 µg C). A diet consisting entirelyof microplankton prey supported larval growth for >2 weeks,and growth rate decreased when larvae reached 4–5 mm inlength, corresponding to the beginning of their morphologicaltransition from tentaculate to lobate feeding mode. The grossgrowth efficiency of larvae fed natural microplankton assemblageswas 3%.  相似文献   

9.
The phylogenetic relationships of Cervidae and Moschidae were examined using partial sequence data of mitochondrial DNA (mtDNA) cytochromeb. Ten new sequences were obtained for six species of Cervidae and Moschidae, and aligned with those previously reported for other deer species. Our results demonstrated that the phylogenetic status of the taxa inferred from molecular data was congruent with taxonomy based on morphological studies. Cervidae formed a monophyletic group that consists of four subfamilies: Cervinae, Muntiacinae, Hydropotinae, and Odocoileinae. Moschidae occurred at the base of the Cervidae clade. On the basis of molecular clocks for genetic distance, the divergence time of mtDNA haplotypes within the subfamily Cervinae, among subfamilies in Cervidae, and between Moschidae and Cervidae was estimated to date 2–7 MYA, 6–10 MYA and 8–13 MYA, respectively.  相似文献   

10.
Short-term variability in vertical distribution and feeding of Atlantic mackerel (Scomber scombrus L.) larvae was investigated while tracking a larval patch over a 48-h period. The patch was repeatedly sampled and a total of 12,462 mackerel larvae were caught within the upper 100 m of the water column. Physical parameters were monitored at the same time. Larval length distribution showed a mode in the 3.0 mm standard length (SL) class (mean abundance of 3.0 mm larvae =75.34 per 100 m3, s=34.37). Highest densities occurred at 20–40 m depth. Larvae <5.0 mm SL were highly aggregated above the thermocline, while larvae ≥5.0 mm SL were more dispersed and tended to migrate below the thermocline. Gut contents of 1,177 mackerel larvae (2.9–9.7 mm SL) were analyzed. Feeding incidence, mean number (numerical intensity) and mean dry weight (weight-based intensity) of prey items per larval gut were significantly dependent on larval size. However, while weight-based feeding intensities continued to increase with larval length, numerical intensity peaked at 4–4.9 mm SL, indicating a shift in the larval diet. While first-feeding larvae relied most heavily on copepod nauplii and eggs, larvae ≥5.0 mm SL initiated piscivorous feeding. All identifiable fish larvae were Atlantic mackerel. Thus, the piscivory was cannibalism. Larval feeding incidence and numerical feeding intensities peaked during daytime and were reduced at night. Daily ration estimates for first-feeding mackerel larvae <4.0 mm SL were extremely low = 1.43% body dry weight, but increased dramatically at 5.0 mm SL, i.e., at the onset of cannibalism, reaching >50% body dry weight in larva ≥8.0 mm SL. Received in revised form: 31 October 2000 Electronic Publication  相似文献   

11.
The combined effects of temperatures of 14, 17, 20, 22, and 25°C and salinities of 36–12‰ on embryos and larvae of the sand dollar Scaphechinus mirabilis was studied. Embryonic development is the most sensitive stage in the early ontogenesis of S. mirabilis. It is completed at a temperature of 14–20°C in a salinity range of 36–24‰ and at temperature of 22°C to 26‰. The fertilization proceeds in wider ranges of temperature and salinity. Among the swimming larvae, blastulae showed the greatest resistance to variations of these environmental factors. All the larvae survived at a temperature of 14–22°C and a salinity of 36–20‰, and more than 70% of them at 18‰. The pluteus I is the most vulnerable stage; probably this is related to the formation of the larval skeleton and transition to phytoplankton feeding. The survival of larvae at the age of 20 days was 100% at 14–22° C and a salinity of 36–24‰, most of them survived at 14–20°C and a salinity 18‰. The temperature 25 ° C is the most damaging for early development of S. mirabilis. The duration of development of that species lasts 28.5–29 days at 20°C and a salinity of 32.2–32.6‰. At 20 and 22°C, the larvae settled and completed metamorphosis more quickly if sand from the parental habitat was present. The larvae did not settle during the experiment (14 days) at 14 ° C and in the absence of sand.  相似文献   

12.
Silent mutation rate estimates for Pinus vary 50-fold, ranging from angiosperm-like to among the slowest reported for plants. These differences either reflect extraordinary genomic processes or inconsistent fossil calibration, and they have important consequences for population and biogeographical inferences. Here we estimate mutation rates from 4 Pinus species that represent the major lineages using 11 nuclear and 4 chloroplast loci. Calibration was tested at the divergence of Pinus subgenera with the oldest leaf fossil from subg. Strobus (Eocene; 45 MYA) or a recently published subg. Strobus wood fossil (Cretaceous; 85 MYA). These calibrations place the origin of Pinus 190-102 MYA and give absolute silent rate estimates of 0.70-1.31x10(-9) and 0.22-0.42x10(-9).site-1.year-1 for the nuclear and chloroplast genomes, respectively. These rates are approximately 4- to 20-fold slower than angiosperms, but unlike many previous estimates, they are more consistent with the high per-generation deleterious mutation rates observed in pines. Chronograms from nuclear and chloroplast genomes show that the divergence of subgenera accounts for about half of the time since Pinus diverged from Picea, with subsequent radiations occurring more recently. By extending the sampling to encompass the phylogenetic diversity of Pinus, we predict that most extant subsections diverged during the Miocene. Moreover, subsect. Australes, Ponderosae, and Contortae, containing over 50 extant species, radiated within a 5 Myr time span starting as recently as 18 MYA. An Eocene divergence of pine subgenera (using leaf fossils) does not conflict with fossil-based estimates of the Pinus-Picea split, but a Cretaceous divergence using wood fossils accommodates Oligocene fossils that may represent modern subsections. Because homoplasy and polarity of character states have not been tested for fossil pine assignments, the choice of fossil and calibration node represents a significant source of uncertainty. Based on several lines of evidence (including agreement with ages inferred using calibrations outside of Pinus), we conclude that the 85 MYA calibration at the divergence of pine subgenera provides a reasonable lower bound and that further refinements in age and mutation rate estimates will require a synthetic examination of pine fossil history.  相似文献   

13.
The prevailing environmental conditions when reproductive products are released in the water column can have a profound influence on the biology and ecology of marine organisms. In reef-building corals, brooding species that release azooxanthellate larvae are expected to release their larvae before sunrise, similar to species releasing zooxanthellate larvae as established in previous studies. This study investigated the diel timing of release of asymbiotic larvae by Isopora cuneata in northwestern Philippines during 2 years through ex situ observations on gravid colonies collected from the reef. Planulation mainly occurred after sunset until midnight, with grand mean hour of release at 19:35 h (95% confidence limit: 18:44–21:02 h) in April 2010 and 19:41 h (18:10–20:59 h) in March 2011. This pattern of release timing is distinct from what has been previously reported for brooding scleractinian coral species with zooxanthellate larvae (i.e., release close to sunrise). The release coincides with the low tidal stand, which may provide opportunity for the prompt settlement of newly released, buoyant larvae to shallow reef areas where adult colonies are generally distributed. The larvae were able to settle with 20 ± 25% success within a day of release, though a distinct settlement peak at 3 days post-release (70 ± 25%). This study provides new information on the early life strategies of the reef-building coral Isopora cuneata. The unique pattern of larval release time and the settlement behavior may influence the population dynamics and success of the species through space and time.  相似文献   

14.
The development of behaviours that are relevant to larval dispersal of marine, demersal fishes is poorly understood. This review focuses on recent work that attempts to quantify the development of swimming, orientation, vertical distribution and sensory abilities. These behaviours are developed enough to influence dispersal outcomes during most of the pelagic larval stage. Larvae swim in the ocean at speeds similar to the currents found in many locations and at 3–15 body lengths per second (BL s−1), although, based on laboratory measurements, species from cold environments swim slower than those from warm environments. At least in warm-water species, larvae swim in an inertial hydrodynamic environment for most of their pelagic period. Unfed swimming endurance is >10 km from about 8–10 mm, and reaches more than 50 km before settlement in several species. Larval fishes are efficient swimmers. In most species, a large majority of larvae have orientated swimming in the ocean, but the precision of orientation does not improve with growth. Swimming direction of the larvae frequently changes ontogenetically. Vertical distribution changes ontogenetically in most species, and both ontogenetic ascents and descents are found. Development of schooling is poorly understood, but it may influence speed, orientation and vertical distribution. Sensory abilities (hearing, olfaction, vision) form early, are well developed and are able to detect cues relevant to orientation for most of the pelagic larval stage. All this indicates that the passive portion of the pelagic larval duration will be short, at least in most warm-water species, and that behaviour must be taken into account when considering dispersal, and in particular in dispersal models. Although quantitative information on the ontogeny of some behaviours is available for a relatively small number of species, more research in this field is required, especially on species from colder waters.  相似文献   

15.
16.
Deviacer guangxiensis Chen & Manchester sp. nov. is described based on asymmetric samaras from the Oligocene Ningming Formation in Guangxi, South China, representing the first documentation of Deviacer fossils in Asia. The Oligocene species, with relatively large fruits, represents the youngest record of the genus so far known; all other records are from the Paleocene and Eocene, or late Eocene—early Oligocene in western North America and Europe. It indicates that the extinct genus, Deviacer, was widely distributed in the northern hemisphere during the Paleogene.  相似文献   

17.
A phytase-encoding gene (phyA115) was cloned from Janthinobacterium sp. TN115, a symbiotic bacterial strain isolated from the gut contents of Batocera horsfieldi larvae (Coleoptera: Cerambycidae), and expressed in Escherichia coli. The 1,884-bp full-length gene encodes a 28-residue putative signal peptide and a 599-residue mature protein with a calculated mass of 64 kDa. The deduced PhyA115 shares low identity with known sequences (47% at most) and contains an N-terminal incomplete domain (residues 29–297; domain N) and a typical β-propeller phytase domain at the C terminus (residues 298–627; domain C). Distinct from other β-propeller phytases that have neutral pH optima (pH 6.0–7.5), purified recombinant PhyA115 exhibits maximal activity at pH 8.5 and 45°C in the presence of 1 mM Ca2+ and is highly active over a wider pH range (pH 6.0–9.0). These results indicate that PhyA115 is a β-propeller phytase that has application potential in aquaculture feed. To our knowledge, this is the first report of cloning of a phytase gene from the symbiotic microbes of an insect digestive tract and from the genus Janthinobacterium. The N-terminal incomplete domain is found to have no phytase activity but can influence the pH property of PhyA115.  相似文献   

18.
Precambrian fossils are crucial for our understanding of the evolution of early organisms. Megascopic body fossils are more important because they potentially represent macroorganisms. However, the Precambrian fossil record is sparse and dominated by microfossils and microbial structures. Here we show a new type of megascopic fossils recovered from the Xingmincun Formation (probably Neoproterozoic age), northeastern China. The specimens are flat, flexible (easily corrugated) and discoidal in outline. Concentric or spiral ridges are preserved on both sides. Petrographical thin section examination indicates that the specimen consist of a thin layer of microcrystalline quartz grains (about 20–30 μm thick) wrapped by an outer sheath, composed primarily of chlorites. Field Emission Scanning Electron Microscopy (FE-SEM) coupled with an x-ray energy dispersive spectrometer system (EDX) analysis shows microstructures and relative element abundance of the fossils, but contributes little in solving their biological affinities. The fossils have previously been linked to discoidal impressions of the Ediacara biota. Close examination on new materials indicates that they are radically different from either the Ediacara impressions or any other Precambrian megascopic remains. Concentric or spiral ridges may result from rhythmic growth and the presence of twin specimens may suggest that the organisms undergo asexual reproduction or inhibition of growth in one direction. Referring them to any known fossil or living group has proved to be difficult. We conclude that they represent a distinct group of Precambrian megascopic organisms regardless of their affinities remaining problematic.  相似文献   

19.
Pelagic eggs and larvae of the macrourid fish Coelorinchus kishinouyei, collected from Suruga Bay, southern Japan and subsequently identified by 16S rRNA gene nucleotide sequences, are described. The spherical eggs, 1.18–1.31 mm in diameter, contained a single oil globule, 0.28–0.33 mm in diameter, and had hexagonally patterned ornamentation on the chorion, 0.017–0.022 mm in width. Melanophores were present on the embryo, yolk and oil globule after the blastopore had closed. Within 1 day after hatching, the body axis of the yolk-sac larvae was bent slightly at the anterior trunk region. During this stage many melanophores formed on the head, trunk, tail, yolk and oil globule, along with small irregular wrinkles on the dorsal and ventral finfolds. Pelagic eggs (after the caudal end of the embryo had detached from the yolk) and yolk-sac larvae also developed xanthophores on the embryo and yolk, and head, trunk, dorsal and ventral finfolds just before tail tip, and yolk, respectively. The pelagic larvae had a short tail, stalked pectoral-fin base and no elongate first dorsal and pelvic-fin rays. Three clusters of melanophores were present on the tail (anterior two embedded to muscle and one just before tail tip subsequently lost with development) and a cluster around the anus (beyond 3.9 mm head length). Nucleotide sequence analyses of comparative adult specimens appeared to confirm a previous proposal that C. productus is a junior synonym of C. anatirostris.  相似文献   

20.
On the family Brassicaceae, the causal agent responsible for downy mildew disease was originally regarded as a single species, Peronospora parasitica (now under Hyaloperonospora), but it was recently reconsidered to consist of many distinct species. In this study, 11 specimens of Peronospora drabae and P. norvegica parasitic on the genus Draba were investigated morphologically and molecularly. Pronounced differences in conidial sizes (P. drabae: 14–20 × 12.5–15.5 μm; P. norvegica: 20–29 × 15.5–22 μm) and 7.8% sequence distance between their ITS1-5.8S-ITS2 rDNA sequences confirmed their status as distinct species. Based on ITS phylogeny and morphology (monopodially branching conidiophores, flexuous to sigmoid ultimate branchlets, hyaline conidia and lobate haustoria), the two species unequivocally belong to the genus Hyaloperonospora and not to Peronospora to which they were previously assigned. Therefore, two new combinations, Hyaloperonospora drabae and H. norvegica, are proposed. The two taxa are illustrated and compared using the type specimen for H. norvegica and authentic specimens for H. drabae, which is lectotypified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号