首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D.M. Engelman  T.A. Steitz 《Cell》1981,23(2):411-422
We propose that the initial event in the secretion of proteins across membranes and their insertion into membranes is the spontaneous penetration of the hydrophobic portion of the bilayer by a helical hairpin. Energetic considerations of polypeptide structures in a nonpolar, lipid environment compared with an aqueous environment suggest that only α and 310 helices will be observed in the hydrophobic interior of membranes. Insertion of a polypeptide is accomplished by a hairpin structure composed of two helices, which will partition into membranes if the free energy arising from burying hydrophobic helical surfaces exceeds the free energy “cost” of burying potentially charged and hydrogen-bonding groups. We suggest, for example, that the hydrophobic leader peptide found in secreted proteins and in many membrane proteins forms one of these helices and is oriented in the membrane with its N terminus inside. In secreted proteins, the leader functions by pulling polar portions of a protein into the membrane as the second helix of the hairpin. The occurrence of all categories of membrane proteins can be rationalized by the hydrophobic or hydrophilic character of the two helices of the inserted hairpin and, for some integral membrane proteins, by events in which a single terminal helix is inserted. We propose that, because of the distribution of polar and nonpolar sequences in the polypeptide sequence, secretion and the insertion of membrane proteins are spontaneous processes that do not require the participation of additional specific membrane receptors or transport proteins.  相似文献   

2.
3.
The ability of hydrophilic residues to shift the transverse position of transmembrane (TM) helices within bilayers was studied in model membrane vesicles. Transverse shifts were detected by fluorescence measurements of the membrane depth of a Trp residue at the center of a hydrophobic sequence. They were also estimated from the effective length of the TM-spanning sequence, derived from the stability of the TM configuration under conditions of negative hydrophobic mismatch. Hydrophilic residues (at the fifth position in a 21-residue hydrophobic sequence composed of alternating Leu and Ala residues and flanked on both ends by two Lys) induced transverse shifts that moved the hydrophilic residue closer to the membrane surface. At pH 7, the dependence of the extent of shift upon the identity of the hydrophilic residue increased in the order: L < GYT < RH < S < P < K < EQ < N < D. By varying pH, shifts with ionizable residues fully charged or uncharged were measured, and the extent of shift increased in the order: L < GYHoT < EoR < S < P < K+< QDoH+ < NE < D. The dependence of transverse shifts upon hydrophilic residue identity was consistent with the hypothesis that shift magnitude is largely controlled by the combination of side chain hydrophilicity, ionization state, and ability to position polar groups near the bilayer surface (snorkeling). Additional experiments showed that shift was also modulated by the position of the hydrophilic residue in the sequence and the hydrophobicity of the sequence moved out of the bilayer core upon shifting. Combined, these studies show that the insertion boundaries of TM helices are very sensitive to sequence, and can be altered even by weakly hydrophilic residues. Thus, many TM helices may have the capacity to exist in more than one transverse position. Knowledge of the magnitudes of transverse shifts induced by different hydrophilic residues should be useful for design of mutagenesis studies measuring the effect of transverse TM helix position upon function.  相似文献   

4.
5.
The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 Å resolution and its C-terminal DNA-binding domain at 1.7 Å resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (βα)4 topology instead of the canonical (βα)5 fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix α10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix α10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.  相似文献   

6.
Integral membrane proteins often contain proline residues in their alpha-helical transmembrane (TM) fragments, which may strongly influence their folding and association. Pro-scanning mutagenesis of the helical domain of glycophorin A (GpA) showed that replacement of the residues located at the center abrogates helix packing while substitution of the residues forming the ending helical turns allows dimer formation. Synthetic TM peptides revealed that a point mutation of one of the residues of the dimerization motif (L75P) located at the N-terminal helical turn of the GpA TM fragment, adopts a secondary structure and oligomeric state similar to the wild-type sequence in detergents. In addition, both glycosylation mapping in biological membranes and molecular dynamics showed that the presence of a proline residue at the lipid/water interface has as an effect the extension of the helical end. Thus, helix packing can be an important factor that determines appearance of proline in TM helices. Membrane proteins might accumulate proline residues at the two ends of their TM segments in order to modulate the exposition of key amino acid residues at the interface for molecular recognition events while allowing stable association and native folding.  相似文献   

7.
Eisenberg's helical hydrophobic moment (less than mu H greater than) algorithm was applied to the analysis of the primary structure of amphipathic alpha-helical peptide hormones and an optimal method for identifying other peptides of this class determined. We quantitate and compare known amphipathic helical peptide hormones with a second group of peptides with proven nonamphipathic properties and determine the best method of distinguishing between them. The respective means of the maximum 11 residue less than mu H greater than for the amphipathic helical and control peptides were 0.46 (+/-/-0.07) and 0.33 (0.07) (P + 0.004). To better reflect the amphipathic potential of the entire peptide, the percent of 11 residue segments in each peptide above a particular less than mu H greater than was plotted vs less than mu H greater than. The resulting curves are referred to as HM-C. The mean HM-C (of the two groups) was highly significantly different such that the HM-C method was superior to others in its ability to distinguish amphipathic from nonamphipathic peptides. Several potential new members of this structural class were identified using this approach. Molecular modeling of a portion of one of these, prolactin inhibitory factor, reveals a strongly amphipathic alpha helix at residues 4-21. This computer-based method may enable rapid identification of peptides of the amphipathic alpha-helix class.  相似文献   

8.
Summary Hydropathy plots of amino acid sequences reveal the approximate locations of the transbilayer helices of membrane proteins of known structure and are thus used to predict the helices of proteins of unknown structure. Because the threedimensional structures of membrane proteins are difficult to obtain, it is important to be able to extract as much information as possible from hydropathy plots. We describe an augmented hydropathy plot analysis of the three membrane proteins of known structure, which should be useful for the systematic examination and comparison of membrane proteins of unknown structure. The sliding-window analysis utilizes the floating interfacial hydrophobicity scale [IFH(h)] of Jacobs and White (Jacobs, R.E., White, S.H., 1989.Biochemistry 28:3421–3437) and the reverse-turn (RT) frequencies of Levitt (Levitt, M., 1977,Biochemistry 17:4277–4285). The IFH(h) scale allows one to examine the consequences of different assumptions about the average hydrogen bond status (h=0 to 1) of polar side chains. Hydrophobicity plots of the three proteins show that (i) the intracellular helix-connecting links and chain ends can be distinguished from the extracellular ones and (ii) the main peaks of hydrophobicity are bounded by minor ones which bracket the helix ends. RT frequency plots show that (iii) the centers of helices are usually very close to wide-window minima of average RT frequency and (iv) helices are always bounded by narrowwindow maxima of average RT frequency. The analysis suggests that side-chain hydrogen bonding with membrane components during folding may play a key role in insertion.  相似文献   

9.
Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (ap) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.  相似文献   

10.
Linker segments assuming the polyproline II type conformation within DNA-protein complexes were sought in protein and linker databases. Seventy-three linker-DNA complexes were found. The mean length of polyproline II type segments was six residues, and prolines were not predominant there. It was shown that the symmetrical position of prolines in these segments prevented the formation of the cooperative water network involving amide groups. An example of specific proline location in some motility apparatus proteins is presented.  相似文献   

11.
Export and secretion of proteins by bacteria   总被引:10,自引:0,他引:10  
Abstract A wide variety of proteins are exported or secreted by a range of morphologically distinct bacteria. The processes of protein export are most extensively characterised in Escherichia coli , where recent advances have been made in the identification of genes involved in forming the export machinery. Both Gram-positive and Gram-negative bacteria secrete proteins into the medium. Gram-negative bacteria have adopted a variety of approaches in order to overcome the additional permeability of the outer membrane.  相似文献   

12.
All cells need to transport proteins across hydrophobic membranes. Several mechanisms have evolved to facilitate this transport, including: (i) the universally-conserved Sec system, which transports proteins in an unfolded conformation and is thought to be the major translocation pathway in most organisms and (ii) the Tat system, which transports proteins that have already obtained some degree of tertiary structure. Here, we present the current understanding of these processes in the domain Archaea, and how they compare to the corresponding pathways in bacteria and eukaryotes.  相似文献   

13.
14.
The kinetics of an individual helix of bacteriorhodopsin have been monitored during folding of the protein into lipid bilayer vesicles. A fluorescence probe was introduced at individual sites throughout helix D of bacteriorhodopsin and the changes in the fluorescence of the label were time-resolved. Partially denatured, labelled bacteriorhodopsin in SDS was folded directly into phosphatidylcholine lipid vesicles. Stopped-flow mixing of the reactants allowed the folding kinetics to be monitored with millisecond time resolution by time-resolving changes in the label fluorescence, intrinsic protein fluorescence as well as in the absorption of the retinal chromophore. Monitoring specific positions on helix D showed that two kinetic phases were altered compared to those determined by monitoring the average protein behaviour. These two phases, of 6.7 s(-1) and 0.33 s(-1), were previously assigned to formation of a key apoprotein intermediate during bacteriorhodopsin folding. The faster 6.7s(-1) phase was missing when time-resolving fluorescence changes of labels attached to the middle of helix D. The amplitude of the 0.33 s(-1) phase increased along the helix, as single labels were attached in turn from the cytoplasmic to the extracellular side. An interpretation of these results is that the 6.7 s(-1) phase involves partitioning of helix D within the lipid headgroups of the bilayer vesicle, while the 0.33 s(-1) phase could reflect transmembrane insertion of this helix. In addition, a single site on helix G was monitored during folding. The results indicate that, unlike helix D, the insertion of helix G cannot be differentiated from the average protein behaviour. The data show that, while folding of bacteriorhodopsin from SDS into lipids is a co-operative process, it is nevertheless possible to obtain information on specific regions of a membrane protein during folding in vitro.  相似文献   

15.
Interactions between the alpha-helix peptide dipoles and charged groups close to the ends of the helix were found to be an important determinant of alpha-helix stability in a previous study. The charge on the N-terminal residue of the C-peptide from ribonuclease A was varied chiefly by changing the alpha-NH2 blocking group, and the correlation of helix stability with N-terminal charge was demonstrated. An alternative explanation for some of those results is that the succinyl and acetyl blocking groups stabilize the helix by hydrogen bonding to an unsatisfied main-chain NH group. The helix dipole model is tested here with peptides that contain either a free alpha-NH3+ or alpha-COO- group, and no other charged groups that would titrate with similar pKa's. This model predicts that alpha-NH3+ and alpha-COO- groups are helix-destabilizing and that the destabilizing interactions are electrostatic in origin. The hydrogen bonding model predicts that alpha-NH3+ and alpha-COO- groups are not themselves helix-destabilizing, but that an acetyl or amide blocking group at the N- or C-terminus, respectively, stabilizes the helix by hydrogen bonding to an unsatisfied main-chain NH or CO group. The results are as follows: (1) Removal of the charge from alpha-NH3+ and alpha-COO- groups by pH titration stabilizes an alpha-helix. (2) The increase in helix stability on pH titration of these groups is close to the increase produced by adding an acetyl or amide blocking group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The interaction of phospholipids with precursor proteins, particularly with the mitochondrial precursor protein apocytochromec is reviewed and integrated with other aspects of protein insertion and translocation, leading to a model for (apo)cytochrome c import into mitochondria, in which phospholipids play a dominant role.  相似文献   

17.
A peptide fragment corresponding to the third helix of Staphylococcus Aureus protein A, domain B, was chosen to study the effect of the main‒chain direction upon secondary structure formation and stability, applying the retro‒enantio concept. For this purpose, two peptides consisting of the native (Ln) and reversed (Lr) sequences were synthesized and their conformational preferences analysed by CD and NMR spectroscopy. A combination of CD and NMR data, such as molar ellipcitity, NOE connectivities, Hα and NH chemical shifts, 3JαN coupling constants and amide temperature coefficients indicated the presence of nascent helices for both Ln and Lr in water, stabilized upon addition of the fluorinated solvents TFE and HFIP. Helix formation and stabilization appeared to be very similar in both normal and retro peptides, despite the unfavourable charge–macrodipole interactions and bad N-capping in the retro peptide. Thus, these helix stabilization factors are not a secondary structure as determined for this specific peptide. In general, the synthesis and confirmational analysis of peptide pairs with opposite main‒chain directions, normal and retro peptides, could be useful in the determination of secondary structure stabilization factors dependent on the direction. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
19.
The transmembrane, bacteriochlorophyll-binding region of a bacterial light-harvesting complex, (LH2-alpha from the photosynthetic bacterium Rhodobacter sphaeroides) was redesigned and overexpressed in a mutant of Rb. sphaeroides lacking LH2. Bacteriochlorophyll served as internal probe for the fitness of this new region for the assembly and energy transfer function of the LH2 complex. The ability to absorb and transfer light energy is practically undisturbed by the exchange of the transmembrane segment, valine -7 to threonine +6, of LH2-alpha with a 14 residue Ala-Leu sequence. This stretch makes up the residues of the transmembrane helix that are in close contact (< or =4.5 A) with the bacteriochlorophyll molecules that are coordinated through His of both the alpha and beta-subunits. In this Ala-Leu stretch, neither alpha-His0, which binds the bacteriochlorophyll, nor the adjacent alpha-Ile-1, were replaced. Novel LH2 complexes composed of LH2-alpha with a model transmembrane sequence and a normal LH2-beta are assembled in vivo into a complex, the biochemical and spectroscopic properties of which closely resemble the native one. In contrast, the additional insertion of four residues just outside the C-terminal end of the model transmembrane helix leads to complete loss of functional antenna complex. The results suggest that light energy can be harvested and transferred efficiently by bacteriochlorophyll molecules attached to only few key residues distributed over the polypeptide, while residues at the bacteriochlorophyll-helix interface seem to be largely dispensable for the functional assembly of this membrane protein complex. This novel antenna with a simplified transmembrane domain and a built-in probe for assembly and function provides a powerful model system for investigation of the factors that contribute to the assembly of chromophores in membrane-embedded proteins.  相似文献   

20.
The export of the maltose-binding protein (MBP), themalE gene product, to the periplasm ofEschericha coli cells has been extensively investigated. The isolation of strains synthesizing MalE-LacZ hybrid proteins led to a novel genetic selection for mutants that accumulate export-defective precursor MBP (preMBP) in the cytoplasm. The export defects were subsequently shown to result from alterations in the MBP signal peptide. Analysis of these and a variety of mutants obtained in other ways has provided considerable insight into the requirements for an optimally functional MBP signal peptide. This structure has been shown to have multiple roles in the export process, including promoting entry of preMBP into the export pathway and initiating MBP translocation across the cytoplasmic membrane. The latter has been shown to be a late event relative to synthesis and can occur entirely posttranslationally, even many minutes after the completion of synthesis. Translocation requires that the MBP polypeptide exist in an export-competent conformation that most likely represents an unfolded state that is not inhibitory to membrane transit. The signal peptide contributes to the export competence of preMBP by slowing the rate at which the attached mature moiety folds. In addition, preMBP folding is thought to be further retarded by the binding of a cytoplasmic protein, SecB, to the mature moiety of nascent preMBP. In cells lacking this antifolding factor, MBP export represents a race between delivery of newly synthesized, export-competent preMBP to the translocation machinery in the cytoplasmic membrane and folding of preMBP into an export-incompetent conformation. SecB is one of threeE. coli proteins classified as molecular chaperones by their ability to stabilize precursor proteins for membrane translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号