首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photophysiology and primary production of phytoplankton in freshwater   总被引:5,自引:0,他引:5  
In the last 10 years enormous progress has been made in developing new instruments to collect physiological data from natural phytoplankton. In this review we summarize the motivation which has powered this engagement and focus on new technologies used to measure fluorescence, absorption and biochemical compositions of natural phytoplankton cells from nature. Combining the knowledge of phytoplankton structure along with taxon-specific measurements of photosynthetic activity and biochemical cell composition, can lead to new models which increase the reliability of water quality prediction. Furthermore, recent progress in the analysis of photophysiological fitness of phytoplankton cells has revealed new knowledge about the phylogenetic diversity of metabolic strategies to cope with light and nutrient stress. Future progress in single cell analysing systems will be discussed.  相似文献   

2.
Phytoplankton growth is a physiological process often limitedby temperature, nutrients or light, while biomass accumulationis a function of growth rates, grazing and deposition. Althoughprimary productivity measurements are usually used to assessresponses to limiting factors, the rates are proportional tobiomass and inversely related to grazing pressure during experimentalincubations. Alternatively, carbon-specific growth-rate determinationsprovide insights into physiological responses without the confoundingeffects of biomass and grazing. The objective of this studywas to quantify the growth-rate responses of phytoplankton toenhanced nutrient availability (nitrate and phosphate) overa range of in situ irradiances. Growth rates were determinedbased on chlorophyll a-specific 14C-uptake rates by phytoplankton.Phytoplankton demonstrated high (24 h) growth rates when exposedto increased concentrations of limiting nutrients, independentof the surface irradiances (12–41%). Growth-rate responseswere also compared with the biomass (chlorophyll a) responsesand community composition. Observed and estimated phytoplanktonbiomass changes during the incubations differed, emphasizingthe structural role of grazers on the phytoplankton community.The phytoplankton community in Galveston Bay has the potentialto instantaneously respond to nutrient pulses, facilitatingdiatom biomass accumulations in spring and summer and small,flagellated species and cyanobacteria during periods of lownutrient inputs. Thus, Galveston Bay phytoplankton biomass andcommunity composition reflect a dynamic balance between thefrequency of nutrient pulsing and grazing intensity.  相似文献   

3.
1. In an attempt to discern long‐term regional patterns in phytoplankton community composition we analysed data from five deep peri‐alpine lake basins that have been included in long‐term monitoring programmes since the beginning of the 1970s. Local management measures have led to synchronous declines in phosphorus concentrations by more than 50% in all four lakes. Their trophic state now ranges from mesotrophic to oligotrophic. 2. No coherence in phytoplankton biomass was observed among lakes, or any significant decrease in response to phosphorus (P)‐reduction (oligotrophication), except in Lakes Constance and Walen. 3. Multivariate analyses identified long‐term changes in phytoplankton composition, which occurred coherently in all lakes despite the differing absolute phosphorus concentrations. 4. In all lakes, the phytoplankton species benefiting from oligotrophication included mixotrophic species and/or species indicative of oligo‐mesotrophic conditions. 5. A major change in community composition occurred in all lakes at the end of the 1980s. During this period there was also a major shift in climatic conditions during winter and early spring, suggesting an impact of climatic factors. 6. Our results provide evidence that synchronous long‐term changes in geographically separated phytoplankton communities may occur even when overall biomass changes are not synchronous.  相似文献   

4.
Julian D. Olden 《Hydrobiologia》2000,436(1-3):131-143
Artificial neural networks are used to model phytoplankton succession and gain insight into the relative strengths of bottom-up and top-down forces shaping seasonal patterns in phytoplankton biomass and community composition. Model comparisons indicate that patterns in chlorophyll aconcentrations response instantaneously to patterns in nutrient concentrations (phosphorous (P), nitrite and nitrate (NO2/NO3–N) and ammonium (NH4–H) concentrations) and zooplankton biomass (daphnid cladocera and copepoda biomass); whereas lagged responses in an index of algal community composition are evident. A randomization approach to neural networks is employed to reveal individual and interacting contributions of nutrient concentrations and zooplankton biomass to predictions of phytoplankton biomass and community composition. The results show that patterns in chlorophyll aconcentrations are directly associated with P, NO2/NO3–N and daphnid cladocera biomass, as well as related to interactions between daphnid cladocera biomass, and NO2/NO3–N and P. Similarly, patterns in phytoplankton community composition are associated with NO2/NO3–N and daphnid cladocera biomass; however show contrasting patterns in nutrient– zooplankton and zooplankton–zooplankton interactions. Together, the results provide correlative evidence for the importance of nutrient limitation, zooplankton grazing and nutrient regeneration in shaping phytoplankton community dynamics. This study shows that artificial neural networks can provide a powerful tool for studying phytoplankton succession by aiding in the quantification and interpretation of the individual and interacting contributions of nutrient limitation and zooplankton herbivory on phytoplankton biomass and community composition under natural conditions.  相似文献   

5.
The introduction of low levels of copper, chlorine, and thermal elevation caused significant changes in the biomass and species composition of natural phytoplankton cultured under ambient nutrient concentrations and natural light. Chlorine addition caused a rapid decline and copper a gradual decline in biomass relative to control assemblages. Both chlorine and copper additions led to a reduction in species diversity. Thermal addition of 2°C caused a slight increase in biomass, but did not affect species diversity. Higher levels of thermal addition during the summer led to greatly decreased levels of biomass. In general, addition of stress led to a reduction in centric diatoms, especially Chaetoceros spp., and predominance of microflagellates. These changes were more pronounced in copper- and heat-treated tanks than in the chlorine-treated tanks, perhaps due to rapid degradation of the added chlorine or nonspecific inhibition.  相似文献   

6.
7.
Global change affects terrestrial loadings of colored dissolved organic carbon (DOC) and nutrients to northern lakes. Still, little is known about how phytoplankton respond to changes in light and nutrient availability across gradients in lake DOC. In this study, we used results from whole‐lake studies in northern Sweden to show that annual mean phytoplankton biomass expressed unimodal curved relationships across lake DOC gradients, peaking at threshold DOC levels of around 11 mg/L. Whole‐lake single nutrient enrichment in selected lakes caused elevated biomass, with most pronounced effect at the threshold DOC level. These patterns give support to the suggested dual control by DOC on phytoplankton via nutrient (positively) and light (negatively) availability and imply that the lakes' location along the DOC axis is critical in determining to what extent phytoplankton respond to changes in DOC and/or nutrient loadings. By using data from the large Swedish Lake Monitoring Survey, we further estimated that 80% of northern Swedish lakes are below the DOC threshold, potentially experiencing increased phytoplankton biomass with browning alone, and/or combined with nutrient enrichment. The results support the previous model results on effects of browning and eutrophication on lake phytoplankton, and provide important understanding of how northern lakes may respond to future global changes.  相似文献   

8.
9.
Galveston Bay, Texas, is a large shallow estuary with a watershed that includes 60% of the major industrial facilities of Texas. However, the system exhibits low to moderate (2-20 μg l−1) microalgal biomass with sporadic phytoplankton blooms. Both nitrogen (N) and phosphate (P) limitation of phytoplankton growth have been proposed for the estuary. However, shifts between N and P limitation of algae growth may occur due to annual fluctuations in nutrient concentrations. The primary goal of this work was to determine the primary limiting nutrient for phytoplankton in Galveston Bay. Nutrient addition bioassays were used to assess short-term (1-2 days) phytoplankton responses (both biomass and community composition) to potentially limiting nutrients. The experimental bioassays were conducted over an annual cycle using natural water collected from the center to lower part of the estuary. Total phytoplankton biomass increased in the nitrate (10 μM) additions in 11 of the 13 bioassays, but no significant increases were detected in the phosphate (3 μM)-only additions. Bioassay results suggest that the phytoplankton community was usually not phosphate limited. All major groups increased in biomass following nitrate additions but diatoms increased in biomass at a faster rate than other groups, shifting the community composition toward higher relative abundance of diatoms. The results of this study suggest that pulsed N input events preferentially favor increases in diatom biomass in this estuary. The broader implications of this study are that N pulsing events, primarily due to river discharge, play an important role in structuring the phytoplankton community in the Galveston Bay estuary.  相似文献   

10.
In this paper, effects of eutrophication in selected compartments of the North Sea ecosystem are discussed, encompassing the possibly positive effects of nutrient enrichment. Based on a variety of studies, impacts on biomass of phytoplankton, macrozoobenthos, microzooplankton, shrimps and fishes and productivity are presented. Enhanced nutrient concentrations and loadings can be observed in several coastal areas of the North Sea. As a result, increases in the concentration, production and changes in the species composition was observed in the phytoplankton. In addition, there are some indications for an increased biomass of macrozoobenthos, whereas an increase in microzooplankton can only be assumed from mesocosm experiments. A concomitant increase of higher trophic levels such as shrimps and fishes, as observed in some coastal regions of the North Sea, is difficult to link directly to eutrophication due to a lack of conclusive field observations showing the causality of the changes. That the large fertilisation process in the North Sea has led to a series of changes is, however, without doubt. The answer, to what extent these can be claimed as being harmless, positive or negative from the anthropogenic point of view, is hampered by the lack of good assessment criteria for marine ecosystems and requires a thorough analysis of all compartments involved by means of long-term-series long enough to discriminate between man-made and natural variability.  相似文献   

11.
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
Highlights► FTIR spectroscopy for the analysis of the biochemical composition of phytoplankton. ► Cell separation by sorting for subsequent FTIR analysis. ► Measurement from subcommunities of natural phytoplankton samples. ► Physiological traits investigated by interpretation of FTIR spectra. ► Under the phytoplankton cell response to abiotic and biotic conditions.  相似文献   

12.
沿岸海域富营养化与赤潮发生的关系   总被引:10,自引:0,他引:10  
徐宁  段舜山  李爱芬  刘振乾 《生态学报》2005,25(7):1782-1787
综述了赤潮的发生与沿岸海域富营养化的关系。近几十年来,人类活动使得天然水体的富营养化进程大大加速。营养负荷的增加与高生物量水华的增多相联系。控制营养输入后,浮游植物生物量或有害藻类水华事件也相应减少。营养的组成与浮游植物的种类组成及水华的形成有密切联系。有机营养对有害藻类水华的促进作用受到关注。营养输入时机影响浮游植物种间竞争的结果,因而对浮游植物的群落演替具有深远影响。由于浮游植物存在生理差异,因而对营养加富的反应因种而异。营养在调控某些有毒藻类的毒素产量方面也发挥着重要作用。此外,营养输入与藻类水华之间存在复杂的间接联系。当然,营养状况并非浮游植物群落演替的唯一决定因素。研究结果提示,控制营养输入、减缓水域富营养化是减少有害藻类水华发生的有效途径,而深入研究典型有害藻类的营养生理对策则为防治并最终消除有害藻类水华提供了理论基础。  相似文献   

13.
14.
A simple bottom–up hypothesis predicts that plant responses to nutrient addition should determine the response of consumers: more productive and less diverse plant communities, the usual result of long‐term nutrient addition, should support greater consumer abundances and biomass and less consumer diversity. We tested this hypothesis for the response of an aboveground arthropod community to an uncommonly long‐term (24‐year) nutrient addition experiment in moist acidic tundra in arctic Alaska. This experiment altered plant community composition, decreased plant diversity and increased plant production and biomass as a deciduous shrub, Betula nana, became dominant. Consistent with strong effects on the plant community, nutrient addition altered arthropod community composition, primarily through changes to herbivore taxa in the canopy‐dwelling arthropod assemblage and detritivore taxa in the ground assemblage. Surprisingly, however, the loss of more than half of plant species was accompanied by negligible changes to diversity (rarefied richness) of arthropod taxa (which were primarily identified to family). Similarly, although long‐term nutrient addition in this system roughly doubles plant production and biomass, arthropod abundance was either unchanged or decreased by nutrient addition, and total arthropod biomass was unaffected. Our findings differ markedly from the handful of terrestrial studies that have found bottom‐up diversity cascades and productivity responses by consumers to nutrient addition. This is probably because unlike grasslands and salt marshes (where such studies have historically been conducted), this arctic tundra community becomes less palatable, rather than more so, after many years of nutrient addition due to increased dominance of B. nana. Additionally, by displacing insulating mosses and increasing the cover of shrubs that cool and shade the canopy microenvironment, fertilization may displace arthropods keenly attuned to microclimate. These results indicate that terrestrial arthropod assemblages may be more constrained by producer traits (i.e. palatability, structure) than they are by total primary production or producer diversity.  相似文献   

15.
Photosynthetic energy storage efficiency controls the development and decline of phytoplankton biomass. All abiotic environmental factors such as light intensity; temperature, nutrient availability and pollutants will exert detectable changes in the photosynthetic energy storage efficiency of phytoplankton, and subsequently affect total biomass and composition of phytoplankton assemblages. Since this efficiency is a sensitive amplifier of ambient conditions, it thereby is an excellent reporter of water quality parameter. We demonstrate the applicability of the novel photoacoustic method in easily and directly estimating the energy storage efficiency of phytoplankton in a drinking water reservoir of different nutrient status. Electronic Supplementary Material Supplementary material is available in the online version of this article at and accessible for authorised users Handling editor: J. Padisak  相似文献   

16.
The effects of nutrient loading on phytoplankton, zooplankton and macrozoobenthos in experimental ecosystems was studied in a 7-month experiment. The mesocosms were designed to mimic the major physical characteristics (irradiance, temperature, mixing) of the Dutch coastal zone in the river Rhine plume. Three different nutrient loading scenarios were used, representing present and future conditions. The level of the spring phytoplankton bloom was determined by phosphorus loading, whereas during summer the nitrogen loading determined phytoplankton biomass. The differences in nutrient loading did not result in shifts in phytoplankton species composition. With exception of the early phase of the spring bloom, diatoms dominated phytoplankton biomass in all nutrient treatments. This was ascribed to microzooplankton grazing on smaller algal species. Microzooplankton biomass showed a positive correlation with primary production, and also significant differences between nutrient treatments. Copepod development was limited, probably due to competition with microzooplankton and predation by benthic fauna. Macrobenthos biomass correlated with primary production, and was lower in the lowest nutrient treatment.  相似文献   

17.
To consider the relationship between chlorophyll a (Chl a) content and phytoplankton growth and nutrient status, four phytoplankton species were grown in nitrogen (N)-limited [and, for one species, phosphorus (P)-limited] culture and measurements were made of CNP biomass, in vivo and in vitro Chl a content, the ratio of variable to maximum fluorescence (FV/FM) and the performance index for photosynthesis, PIABS (a derivative of the O-J-I-P analysis of photosystem II functionality). Interspecies differences plus the development of intraspecies differences during nutrient stress produced c. 10-fold variations in Chl : C. Estimates of C from in vivo Chl content were better than those from extracted Chl content, as the decline in Chl : C during nutrient stress was offset in part by increased Chl fluorescence. FV/FM was not a robust indicator of nutrient status or relative growth rate. Responses of FV/FM in cells re-fed the limiting nutrient showed no consistent pattern with which to gauge nutrient status. PIABS showed some promise as an indicator of nutrient status and relative growth rate. Chl a content and fluorescence parameters do not deserve the unquestioned status they usually enjoy as indicators of biomass and physiological status.  相似文献   

18.
The aim of this research was to examine nutrient limitation of phytoplankton in solar salt ponds of varying salinity at Useless Inlet in Western Australia. These ponds use solar energy to evaporate seawater for the purpose of commercial salt production. A combination of techniques involving water column nutrient ratios, comparisons of nutrient concentrations to concentration of magnesium ions and bioassays were used in the investigation. Comparisons of changes in dissolved inorganic nitrogen to phosphorus ratios and concentrations of dissolved inorganic nutrients against changes in concentrations of the conservative cation Mg2+ indicated that phytoplankton biomass was potentially nitrogen limited along the entire pond salinity gradient. Nutrient addition bioassays indicated that in low salinity ponds, phytoplankton was nitrogen limited but in high salinity ponds, phosphorus limited. This may be due to isolation of phytoplankton in bioassay bottles from in situ conditions as well as to changes in phytoplankton species composition between ponds, and the variable availability of inorganic and organic nutrient sources. The differences in limiting nutrient between methods indicate that phytoplankton cells may be proximally limited by nutrients that are not theoretically limiting at the pond scale. Dissolved organic nutrients constituted a large proportion of total nutrients, with concentrations increasing through the pond sequence of increasing salinity. From the change in nutrient concentrations in bioassay bottles, sufficient dissolved organic nitrogen may be available for phytoplankton uptake in low salinity ponds, potentially alleviating the dissolved inorganic nitrogen limitation of phytoplankton biomass. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

19.
1 . To investigate direct effects of zebra mussel ( Dreissena polymorpha ) feeding activities on phytoplankton community composition, short‐term microcosm experiments were performed in natural water with complex phytoplankton communities. Both gross effects (without resuspension of mussel excretions) and net effects (with resuspension) were studied.
2. Gross clearance rates were not selective; essentially all taxa were removed at similar rates ranging from 24 to 63 mL mussel–1 h–1. Net clearance rates were highly selective; different plankton taxa were removed at very different rates, ranging from 12 to 83% of the gross rates, leading to consistent changes in the phytoplankton community composition. Thus, although zebra mussels can cause most phytoplankton to decline, there is considerable variation among taxa in either pre‐digestive selection or post‐digestive survival.
3. The direct, short‐term effects of zebra mussels on phytoplankton community composition are consistent with some of the major changes observed in the Hudson River since establishment of zebra mussels.
4. We show, with simple calculations, how zebra mussel filtration rate, its selective efficiency on various taxa, and phytoplankton growth rates interact to produce changes in the phytoplankton composition.  相似文献   

20.
1. In natural lakes, modifications in the species composition and abundance of phytoplankton communities may ultimately be responses to changes in nutrient availability and climatic fluctuations. Phytoplankton and associated environmental factors were collected at monthly intervals from the beginning of the 1990s to 2007 in the large subalpine Lake Garda (zmax = 350 m, V = 49 × 109 m3). In this study period, the lake showed a slight and continuous increase of total phosphorus (TP) in the water column, up to concentrations of 18–20 μg P L?1. This increase represented the last stage of a long‐term process of enrichment documented since the 1970s, when concentrations of TP were below or around 10 μg P L?1. 2. At the community level, annual phytoplankton cycles underwent a unidirectional and slow shift mainly due to changes in the species more affected by the nutrient enrichment of the lake. After a first and long period of dominance by conjugatophytes (Mougeotia) and diatoms (Fragilaria), phytoplankton biomass in recent years was sustained by cyanobacteria (Planktothrix). Other important modifications in the development of phytoplankton were superimposed on this pattern due to the effects of annual climate fluctuations principally mediated by the deep mixing events at spring overturn and, secondarily, by temperature and thermal stability of the water column during the growing season. 3. Interannual variations in the stability and temperature of the water column appeared to influence the development of a few subdominant flagellates (dinophytes and cryptophytes). Nevertheless, the major impact of climate on phytoplankton was indirect, and mediated through the effects of winter climatic conditions on deep mixing dynamics. Winter climatic fluctuations proved to be a key element in a linked chain of causal factors including cooling of hypolimnetic waters, deep vertical mixing and epilimnetic nutrient replenishment. The process of fertilisation was measurable both for TP and dissolved inorganic nitrogen, although only the first had a large effect, reinforcing the seasonal growth of a few dominant groups. The degree of nutrient replenishment further increased the spring development of large diatoms and the increase of Planktothrix in summer and autumn. 4. Currently, changes in nutrient concentrations have the greatest effect on the phytoplankton community, while direct effects due to the interannual variations in the thermal regime are of secondary importance compared with the indirect effects mediated through deep water mixing and spring fertilisation. Overall, the results demonstrate that the consequences of climatic fluctuations and climate warming on phytoplankton communities need to be studied at different levels of complexity and integration, from the direct effects of temperature and thermal regime, to the indirect effects mediated by the physiographic characteristics of water bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号