首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
生物柴油原料资源高油脂微藻的开发利用   总被引:15,自引:1,他引:15  
生物柴油作为化石能源的替代燃料已在国际上得到广泛应用。至今生物柴油的原料主要来自油料植物, 但与农作物争地的情况以及较高的原料成本限制了生物柴油的进一步推广。微藻作为高光合生物有其特殊的原料成本优势, 微藻的脂类含量最高可达细胞干重的80%。利用生物技术改良微藻, 获得的高油脂基因工程微藻经规模养殖, 可大大降低生物柴油原料成本。介绍了国内外生物柴油的应用现状, 阐述了微藻作为生物柴油原料的优势, 对基因工程技术调控微藻脂类代谢途径的研究进展, 以及在构建工程微藻中面临的问题和应采取的对策进行了综述和展望。  相似文献   

2.
中国如何突破生物柴油产业的原料瓶颈   总被引:72,自引:4,他引:72  
因应我国日益严峻的能源资源、能源环境和能源安全形势,国家大力倡导发展可再生能源。生物柴油是最重要的液体可再生燃料之一,在能源性质方面可以完全替代化石柴油,而且还具有安全环保等其它优良特性。当前利用动植物油脂生产生物柴油,原料成本偏高,而且稳定、充足的油脂原料供应体系尚未形成。我国是油脂资源短缺国家,近年来植物油进口量逐年增加。同时,我国耕地资源匮乏,粮食供应形势不容乐观,扩大油料作物种植的潜力非常有限。但是,我国宜林地丰富,农林废弃生物质资源量巨大。综合以上因素,我国应重点发展木本油料植物规模化种植和推广,加快微生物油脂发酵技术创新和产业化进程;同时,利用植物遗传育种技术提高油料作物产量以及选择性发展不与粮争地的油料作物。依靠各方面的进步,发展创新的油脂生产技术,保障我国生物柴油产业和油脂化工行业健康发展。  相似文献   

3.
生物柴油的制造技术与应用   总被引:1,自引:0,他引:1  
目前,由可再生油脂原料制造绿色燃料生物柴油的技术成为各国的研究热点,本文重点介绍了生物柴油的酯交换法制备技术,并对生物柴油及其副产品甘油等在国内外的开发应用作了介绍。[编者按]  相似文献   

4.
乌桕油脂成分作为生物柴油原料的研究进展   总被引:4,自引:0,他引:4  
生物柴油本质上是长链脂肪酸甲酯,工业上多通过酯交换反应进行生产.乌桕是广泛分布于中国的油料树种,其种子油脂含量高达40%左右,是生物柴油的优质原料.本文在介绍能源植物的种类及生物柴油生产概况的同时综述了乌桕皮油和梓油的提取工艺、用于催化乌桕油生产生物柴油的催化剂以及乌桕油及种子中脂肪酸组成等方面的研究进展.规范乌桕种质资源的标准化与分子标记辅助遗传育种、油脂代谢途径机理的揭示及转基因技术创制高含油新品种、新型纳米催化剂及新型高效固定化抗逆脂肪酶的研制对推动乌桕生物柴油的发展具有重要作用.  相似文献   

5.
生物柴油的制造技术与应用   总被引:1,自引:0,他引:1  
目前,由可再生油脂原料制造绿色燃料生物柴油的技术成为各国的研究热点,本文重点介绍了生物柴油的酯交换法制备技术,并对生物柴油及其副产品甘油等在国内外的开发应用作了介绍。  相似文献   

6.
超临界甲醇酯交换法制备生物柴油研究进展   总被引:5,自引:0,他引:5  
超临界甲醇法制备生物柴油是动、植物油脂与超临界甲醇发生酯交换反应生成脂肪酸甲酯的工艺。与传统的酸、碱催化法以及酶催化法等技术相比,超临界酯交换反应具有不需要催化剂、反应速度快、产物分离简单等突出特点。缺点在于反应温度和压力条件不够温和,对设备要求较高,操作费用可观。如何从系统工程的角度发挥其优点、克服缺点,则是未来该项技术能否实现工业化应用的关键。回顾了该技术的研究进展,重点对过程的影响因素进行了分析讨论。  相似文献   

7.
选用含油量、油脂成分、结实性状、分布范围和繁殖性状作为评价指标,运用灰色关联度分析法对云南分布的、可作为生物柴油原料的188种主要木本油料植物(含油量≥30%)进行了综合评价。结果表明:滇新樟(Neocinnamomum caudatum)、西南红山茶(Camellia pitardii)等29种木本油料植物与理想种的关联度均超过0.6500,具有良好的综合性状,可以在研究开发的基础上作为云南生物柴油产业的原料植物来推广应用。此外,脉叶虎皮楠(Daphniphyllum paxianum)、牛紏吴萸(Evodia trichotoma)、长梗大花漆(Toxicodendron grangiflorum var. longipes)是这次新发现的3种具有开发潜力的木本生物柴油原料植物。  相似文献   

8.
我国生物柴油原料来源的多样性探讨   总被引:2,自引:0,他引:2  
生物柴油作为一种重要的生物质能源已引起世人关注,其生产和应用已成为缓解能源危机的重要组成部分。本文分析了我国生物柴油生产原料多样性的必要性,阐述了可用于生物柴油生产的原料类型和应用开发现状,以及用于生产时所存在的问题,提出了相应的解决对策,最后对生物柴油的应用前景给予了展望。  相似文献   

9.
研究开发燃料油植物生产生物柴油的几个策略   总被引:19,自引:0,他引:19  
能源短缺和环境污染是目前人类社会所面临的巨大挑战,而生物柴油的应用和推广正是现阶段解决能源替代问题的较佳手段。现今国外生物柴油产业发展十分迅速,产量逐年增长,而我国的生物柴油产业才刚刚起步。本文介绍了极具潜力的5种木本油料植物麻疯树(Jatropha curcas)、光皮树(Cornus wilsoniana)、文冠果(Xanthoceras sorbifolia)、黄连木(Pistacia chinensis)和欧李(Cerasus humilis)和1种野生草本油料植物海篷子(Salicornia bigelivii),进而提出运用转基因技术提高燃料油植物种子含油量的优势,归纳总结了生产生物柴油的4种不同工艺。最后建议政府应对燃料油植物种植和生产加工产业实施补贴和免税等扶植政策。本文对我国生物质能源产业的发展提供了有价值的实施策略,具有重要的借鉴和参考价值。  相似文献   

10.
能源短缺和环境污染是目前人类社会所面临的巨大挑战, 而生物柴油的应用和推广正是现阶段解决能源替代问题的较佳手段。现今国外生物柴油产业发展十分迅速, 产量逐年增长, 而我国的生物柴油产业才刚刚起步。本文介绍了极具潜力的5种木本油料植物麻疯树(Jatropha curcas)、光皮树(Cornus wilsoniana)、文冠果(Xanthoceras sorbifolia)、黄连木(Pistacia chinensis)和欧李(Cerasus humilis)和1种野生草本油料植物海篷子(Salicornia bigelivii), 进而提出运用转基因技术提高燃料油植物种子含油量的优势, 归纳总结了生产生物柴油的4种不同工艺。最后建议政府应对燃料油植物种植和生产加工产业实施补贴和免税等扶植政策。本文对我国生物质能源产业的发展提供了有价值的实施策略, 具有重要的借鉴和参考价值。  相似文献   

11.
Ionic liquids, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIm][PF6]) and 1-ethyl-3-methyl imidazolium hexafluorophosphate ([EMIm][PF6]), were used for the methanolysis of sunflower oil using Candida antarctica lipase (Novozyme 435) and gave yields of fatty acid methyl esters at 98–99% within 10 h. The optimum conditions of methanolysis in hydrophobic ionic liquids are 2% (w/w) lipase, 1:1 (w/w) oil/ionic liquid and 1:8 (mol/mol) oil/methanol at 58–60°C. Methanolysis using hydrophilic ionic liquids, 3-methyl imidazolium tetrafluoroborate ([HMIm][BF4]) and 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm][BF4]), gave very poor yields. A hydrophobic ionic liquid thus protects the lipase from methanol. Recovered ionic liquids and lipase were used for four successive reaction cycles without any significant loss of activity.  相似文献   

12.
One of the main drawbacks of the use of biodiesel is its bad behavior at low temperatures. In this work, we show that it is possible to take profit of the presence of free fatty acids in the starting materials used for biodiesel production (i.e. reused oils) by synthesizing additives able to improve cold flow properties. The synthesis of fatty acid derivatives have been successfully carried out by esterification of stearic, oleic and linoleic acids with bulky linear and cyclic alcohols and by epoxidation of methyl oleate and subsequent ring-opening reaction with the same alcohols. The study of crystallization patterns of pure derivatives by DSC and optical microscopy revealed the improvement of cold properties of biodiesel. Blends of biodiesel with up to 5% of some of these compounds allowed a decrease of CFPP (Cold Filter Pour Point). Both observations reveal the utility of these compounds as cheap and renewable additives.  相似文献   

13.
The effect of fatty acids chain length (LC) and its interaction with unsaturation degree (UD) on important biodiesel quality parameters was studied. Low calorific value, kinematic viscosity, flash point, cetane number and cold filter plugging point of biodiesel blends covering a wide range of fatty acids were analyzed. Analytical results were processed with statistical regression to obtain a prediction model for each property, combining LC and UD. Due to the antagonistic effects of the chemical composition over quality properties, the Derringer desirability function was proposed to allow the most suitable fatty acid composition. This target was achieved considering an average of 1.26 double bounds and 17 carbon atoms. A set of combinations of LC and UD values that provides a biodiesel that fits the European standard EN 14214 was proposed. It was found that a reduction of FAME LC allows a lower UD while keeping biodiesel specifications under the standard limits.  相似文献   

14.
A method to prepare fatty acid methyl esters was developed for fatty acid analysis of triacylglycerols by gas chromatography (GC). Triacylglycerols were mixed with methanolic CH3ONa in hexane containing a mid-polar solvent for 10 s at room temperature. Under these conditions, trioleoylglycerol was converted to methyl oleate with an average yield of 99.3%. This procedure gave reliable and reproducible data on fatty acid compositions determined by GC.  相似文献   

15.
The amount of glycerol derived from the biodiesel industry is exponentially increasing. The valorization of glycerol has acquired attention and resources with an obvious economic and environmental interest. Glycerol has the potential to improve the profitability of biodiesel in a biorefinery scenario. Added-value metabolites obtained from glycerol-based fermentations are the target of multiple research studies, primarily chemicals and biopolymers. Pigments and polyunsaturated fatty acids are exceptional examples as they have market presence as nutraceuticals. Most of the studies reviewed have been based on microalgae cultures. Depending on the strain and the engineering aspects of such cultures the final yield suffers notable variations. This is an emerging field which shows great potential from the perspective of a byproduct usage and the increasing yields (value) obtained from the bioprocess.  相似文献   

16.
The study documented the potential of isolated filamentous fungus Aspergillus sp. as whole cell biocatalyst for biodiesel production using Sabourauds dextrose broth medium (SDBM) and corncob waste liquor (CWL) as substrates. SDBM showed improvement in both biomass production (13.6 g dry weight/1000 ml) and lipid productivity (23.3%) with time. Lipid extraction was performed by direct (DTE) and indirect (IDTE) transesterification methods. DTE showed higher transesterification efficiency with broad spectrum of fatty acids profile over IDTE. CWL as substrate showed good lipid productivity (22.1%; 2g dry biomass; 48 h) along with efficient substrate degradation. Lipids derived from both substrates depicted high fraction of saturated fatty acids than unsaturated ones. Physical characteristics of fungal based biodiesel correlated well with prescribed standards. CWL derived biodiesel showed relatively good fuel properties (acid number, 0.40 mg KOH/g of acid; iodine value, 11 g I?/100 g oil; density, 0.8342 g/cm3) than SDBM derived biodiesel.  相似文献   

17.
Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols, and is a candidate of materials for production of biodiesel fuel. A mixture (acid oil model) of refined FFAs and vegetable oil was recently reported to be converted to fatty acid methyl esters (FAMEs) at >98% conversion by a two-step reaction system comprising methyl esterification of FFAs and methanolysis of acylglycerols using immobilized Candida antarctica lipase. The two-step system was thus applied to conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel. Under similar conditions that were determined by using acid oil model, however, the lipase was unstable and was not durable for repeated use. The inactivation of the lipase was successfully avoided by addition of excess amounts of methanol (MeOH) in the first-step reaction, and by addition of vegetable oil and glycerol in the second-step reaction. Hence, the first-step reaction was conducted by shaking a mixture of 66 wt% acid oil (77.9 wt% FFAs, 10.8 wt% acylglycerols) and 34 wt% MeOH with 1 wt% immobilized lipase, to convert FFAs to their methyl esters. The second-step reaction was performed by shaking a mixture of 52.3 wt% dehydrated first-step product (79.7 wt% FAMEs, 9.7 wt% acylglycerols), 42.2 wt% rapeseed oil, and 5.5 wt% MeOH using 6 wt% immobilized lipase in the presence of additional 10 wt% glycerol, to convert acylglycerols to FAMEs. The resulting product was composed of 91.1 wt% FAMEs, 0.6 wt% FFAs, 0.8 wt% triacylglycerols, 2.3 wt% diacylglycerols, and 5.2 wt% other compounds. Even though each step of reaction was repeated every 24 h by transferring the immobilized lipase to the fresh substrate mixture, the composition was maintained for >100 cycles.  相似文献   

18.
The introduction of a useful new chromogenic substrate for the determination of elastase (EC 3.4.4.7) activity is described. N-acetyl-L-Ala-L-Ala-L-Ala-p-nitroanilide (AcAla3NA) is a new specific elastase substrate whose hydrolysis can be followed spectrophotometrically at 410 nm in a wide pH range. Its rate of hydrolysis by α-chymotrypsin (EC 3.4.4.5) and trypsin (EC 3.4.4.4.) is 0.02% and 0.001% respectively compared to its rate of hydrolysis by elastase. As little as 0.1 μg elastase/ml can be satisfactorily determined. At pH 8, Km = 0.88 mM and kcat = 11.9 sec?1.  相似文献   

19.
Enzymic synthesis of fructose esters was studied under reduced pressure. Different acyl donors were tested, and immobilized Candida antarctica lipase was used as biocatalyst. Influences of pressure, nature of the acyl donor, molar ratio sugar/acyl donor were investigated. Pressure had the greatest influence. At 200 mbar, more than 90% of fructose was acylated compared to 50% under atmospheric pressure. This is explained by the evaporation of reaction by-product (methanol or water) that shifted the equilibrium. C. antarctica lipase catalyzed sugar ester synthesis very efficiently using rapeseed oil as acyl donor. Moreover, synthesis performed with an equimolar mixture of both substrates gave promising results. Although the reaction rate was slower than synthesis performed with an excess of fatty acid, fructose monooleate concentration was still high (44 g l−1 instead of 56 g l−1) and the residual acyl donor concentration was very low. Downstream processes for the recovery of pure fructose monooleate were simplified in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号