首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a new model to examine the role of arterial baroreceptors in the long-term control of mean arterial pressure (MAP) in dogs. Baroreceptors in the aortic arch and one carotid sinus were denervated, and catheters were implanted in the descending aorta and common carotid arteries. MAP and carotid sinus pressure (CSP) averaged 104 +/- 2 and 102 +/- 2 mmHg (means +/- 1 SE), respectively, during a 5-day control period. Baroreceptor unloading was induced by ligation of the common carotid artery proximal to the innervated sinus (n = 6 dogs). MAP and CSP averaged 127 +/- 7 and 100 +/- 3 mmHg, respectively, during the 7-day period of baroreceptor unloading. MAP was significantly elevated (P < 0.01) compared to control, but CSP was unchanged. Heart rate and plasma renin activity increased significantly in response to baroreceptor unloading. Removal of the ligature to restore normal flow through the carotid resulted in normalization of all variables. Ligation of the carotid below a denervated sinus (n = 4) caused a significant decrease in CSP but no systemic hypertension. These results indicate that chronic unloading of carotid baroreceptors can produce neurogenic hypertension and provide strong evidence that arterial baroreceptors are involved in the long-term control of blood pressure.  相似文献   

2.
The role of thermoregulatory background in the baroreceptor reflex control of the tail circulation was investigated 1) in anesthetized rats with a constant flow technique and 2) in conscious rats by measuring tail blood flow (venous occlusion plethysmography). In series I, during normothermia, systemic intravenous phenylephrine infusion increased mean arterial pressure (MAP) by 61.0 +/- 3.6 mmHg and induced a reflex decrease in tail perfusion pressure (TPP) from 105.0 +/- 6.3 to 84.2 +/- 4.4 mmHg (P less than 0.005). Hyperthermia decreased TPP to 66.5 +/- 5.1 mmHg (P less than 0.001) and abolished the TPP response to increased MAP (P greater than 0.05). Increases in MAP via systemic infusion of whole blood caused reductions in TPP during normothermia but failed to reduce TPP further during hyperthermia. Graded decreases in MAP during both normothermia and hyperthermia caused tail vasoconstriction. The increase in TPP was greater (P less than 0.025) during hyperthermia. In series II, conscious animals showed similar responses to hemorrhage. Graded decreases in MAP produced graded decreases in tail vascular conductance (TVC, ml.100 ml-1.min-1.100 mmHg-1). The slope of the TVC-MAP relationship averaged 0.011 +/- 0.003 TVC U/mmHg during normothermia and was markedly steeper (P less than 0.01) during hyperthermia (1.99 +/- 0.39 TVC U/mmHg). Thus the participation of the cutaneous vasculature of the rat in baroreceptor reflexes depends on thermal status, probably through the level of background sympathetic vasoconstrictor nerve activity.  相似文献   

3.
We hypothesized that the more-pronounced hypotensive and bradycardic effects of an antiorthostatic posture change from seated to supine than water immersion are caused by hydrostatic carotid baroreceptor stimulation. Ten seated healthy males underwent five interventions of 15-min each of 1) posture change to supine, 2) seated water immersion to the Xiphoid process (WI), 3) seated neck suction (NS), 4) WI with simultaneous neck suction (-22 mmHg) adjusted to simulate the carotid hydrostatic pressure increase during supine (WI + NS), and 5) seated control. Left atrial diameter increased similarly during supine, WI + NS, and WI and was unchanged during control and NS. Mean arterial pressure (MAP) decreased the most during supine (7 +/- 1 mmHg, P < 0.05) and less during WI + NS (4 +/- 1 mmHg) and NS (3 +/- 1 mmHg). The decrease in heart rate (HR) by 13 +/- 1 beats/min (P < 0.05) and the increase in arterial pulse pressure (PP) by 17 +/- 4 mmHg (P < 0.05) during supine was more pronounced (P < 0.05) than during WI + NS (10 +/- 2 beats/min and 7 +/- 2 mmHg, respectively) and WI (8 +/- 2 beats/min and 6 +/- 1 mmHg, respectively, P < 0.05). Plasma vasopressin decreased only during supine and WI, and plasma norepinephrine, in addition, decreased during WI + NS (P < 0.05). In conclusion, WI + NS is not sufficient to decrease MAP and HR to a similar extent as a 15-min seated to supine posture change. We suggest that not only static carotid baroreceptor stimulation but also the increase in PP combined with low-pressure receptor stimulation is a possible mechanism for the more-pronounced decrease in MAP and HR during the posture change.  相似文献   

4.
During baroreceptor unloading, sympathoexcitation is attenuated in near-term pregnant compared with nonpregnant rats. Alterations in balance among different excitatory and inhibitory inputs within central autonomic pathways likely contribute to changes in regulation of sympathetic outflow in pregnancy. Both baroreflex-dependent and baroreflex-independent GABAergic inputs inhibit sympathoexcitatory neurons within rostral ventrolateral medulla (RVLM). The present experiments tested the hypothesis that influence of baroreflex-independent GABAergic inhibition of RVLM is greater in pregnant compared with nonpregnant rats. Afferent baroreceptor inputs were eliminated by bilateral sinoaortic denervation in inactin-anesthetized rats. In pregnant compared with nonpregnant rats, baseline mean arterial pressure (MAP) was lower (pregnant = 75 +/- 6 mmHg, nonpregnant = 115 +/- 7 mmHg) and heart rate was higher (pregnant = 381 +/- 10 beats/min, nonpregnant = 308 +/- 10 beats/min). Pressor and sympathoexcitatory [renal sympathetic nerve activity, (RSNA)] responses due to bilateral GABA(A) receptor blockade (bicuculline, 4 mM, 100 nl) of the RVLM were greater in pregnant rats (delta MAP: pregnant = 101 +/- 4 mmHg, nonpregnant = 80 +/- 6 mmHg; delta RSNA: pregnant = 182 +/- 23% control, nonpregnant = 133 +/- 10% control). Unexpected transient sympathoexcitatory effects of angiotensin AT(1) receptor blockade in the RVLM were greater in pregnant rats. Although excitatory responses to bicuculline were attenuated by prior RVLM AT1 receptor blockade in both groups, pressor responses to disinhibition of the RVLM remained augmented in pregnant rats. Increased influence of baroreflex-independent GABAergic inhibition in RVLM could contribute to suppressed sympathoexcitation during withdrawal of arterial baroreceptor input in pregnant animals.  相似文献   

5.
It has been suggested that nitric oxide (NO) is a key modulator of both baroreceptor and exercise pressor reflex afferent signals processed within the nucleus tractus solitarius (NTS). However, studies investigating the independent effects of NO within the NTS on the function of each reflex have produced inconsistent results. To address these concerns, the effects of microdialyzing 10 mM L-arginine, an NO precursor, and 20 mM N(G)-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, into the NTS on baroreceptor and exercise pressor reflex function were examined in 17 anesthetized cats. Arterial baroreflex regulation of heart rate was quantified using vasoactive drugs to induce acute changes in mean arterial pressure (MAP). To activate the exercise pressor reflex, static hindlimb contractions were induced by electrical stimulation of spinal ventral roots. To isolate the exercise pressor reflex, contractions were repeated after barodenervation. The gain coefficient of the arterial cardiac baroreflex was significantly different from control (-0.24 +/- 0.04 beats.min(-1).mmHg(-1)) after the dialysis of L-arginine (-0.18 +/- 0.02 beats.min(-1).mmHg(-1)) and L-NAME (-0.29 +/- 0.02 beats.min(-1).mmHg(-1)). In barodenervated animals, the peak MAP response to activation of the exercise pressor reflex (change in MAP from baseline, 39 +/- 7 mmHg) was significantly attenuated by the dialysis of L-arginine (change in MAP from baseline, 29 +/- 6 mmHg). The results demonstrate that NO within the NTS can independently modulate both the arterial cardiac baroreflex and the exercise pressor reflex. Collectively, these findings provide a neuroanatomical and chemical basis for the regulation of baroreflex and exercise pressor reflex function within the central nervous system.  相似文献   

6.
Arterial baroreceptors reset rapidly within minutes during acute hypertension; baroreceptor pressure threshold (Pth) is increased and the pressure-baroreceptor activity relation is shifted to the right. The purpose of the present study was to determine if prostacyclin (PGI2) or other prostanoids, released during acute hypertension modulate the magnitude of baroreceptor resetting. Baroreceptor activity was recorded from the vascularly-isolated carotid sinus during distension of the sinus with slow pressure ramp in rabbits anesthetized with chloralose. Pressure-activity curves were generated after holding carotid sinus pressure for 10-15 min from 30 to 100 mmHg. In control, the elevation of holding pressure increased Pth from 44+/- to 65+/-5 mmHg (p < 0.05, n = 12). In the presence of PGI2 (20 microM), Pth averaged 43+/-4 and 45+/-3 mmHg (n = 12) after holding pressure at 30 and 100 mmHg, respectively. In the control group before exposing the carotid sinus to indomethacin, an elevation of holding pressure increased Pth from 49+/-2 to 71+/-3 mmHg (p < 0.05, n = 12). After inhibition of the endogenous formation of prostanoids with indomethacin (20 microM), Pth increased by a significantly greater extent from 61+/-2 to 90+/-3 mmHg (p < 0.05, n = 12) with the increase in holding pressure. The slope of the pressure-activity curve (baroreceptor gain) was not influenced by the change in holding pressure. It was increased significantly by PGI2, while decreased by indomethacin. Neither the change in holding pressure nor PGI2 affected the circumferential wall strain of carotid sinus over a wide range of pressure alteration. The results suggest that PGI2 or other prostanoids released during acute hypertension sensitizes baroreceptors and provides a negative feedback mechanism that opposes and limits the magnitude of rapid baroreceptor resetting.  相似文献   

7.
The role of anterior hypothalamic angiotensin-(1-7) (Ang-(1-7)) on blood pressure regulation was studied in sinoaortic denervated (SAD) rats. Since angiotensin-converting enzyme inhibitors increase endogenous levels of Ang-(1-7), we addressed the involvement of Ang-(1-7) in the hypotensive effect induced by captopril in SAD rats. Wistar rats 7 days after SAD or sham operation (SO) were anaesthetized and the carotid artery was cannulated for monitoring mean arterial pressure (MAP). A needle was inserted into the anterior hypothalamus for drug administration. Intrahypothalamic administration of Ang-(1-7) (5 pmol) was without effect in SO rats but reduced MAP in SAD rats by 15.5+/-3.2 mm Hg and this effect was blocked by 250 pmol [D-Ala(7)]-Ang-(1-7), a Mas receptor antagonist. Angiotensin II (Ang II) induced an increase in MAP in both groups being the effect greater in SAD rats (DeltaMAP=15.8+/-1.4 mm Hg) than in SO rats (DeltaMAP=9.6+/-1.0 mm Hg). Ang-(1-7) partially abolished the pressor response caused by Ang II in SAD rats. Whilst the captopril intrahypothalamic injection did not affect MAP in SO animals, it significantly reduced MAP in SAD rats (DeltaMAP=-13.3+/-1.9 mm Hg). Either [D-Ala(7)]-Ang-(1-7) or an anti-Ang-(1-7) polyclonal antibody partially blocked the MAP reduction caused by captopril. In conclusion, whilst Ang-(1-7) does not contribute to hypothalamic blood pressure regulation in SO normotensive animals, in SAD rats the heptapeptide induces a reduction of blood pressure mediated by Mas receptor activation. Although Ang-(1-7) is not formed in enough amount in the AHA of SAD animals to exert cardiovascular effects in normal conditions, our results suggest that enhancement of hypothalamic Ang-(1-7) levels by administration of captopril is partially involved in the hypotensive effect of the ACE inhibitor.  相似文献   

8.
The hypothesis that baroreceptor unloading during dynamic limits cutaneous vasodilation by withdrawal of active vasodilator activity was tested in seven human subjects. Increases in forearm skin blood flow (laser-Doppler velocimetry) at skin sites with (control) and without alpha-adrenergic vasoconstrictor activity (vasodilator only) and in arterial blood pressure (noninvasive) were measured and used to calculate cutaneous vascular conductance (CVC). Subjects performed two similar dynamic exercise (119 +/- 8 W) protocols with and without baroreceptor unloading induced by application of -40 mmHg lower body negative pressure (LBNP). The LBNP condition was reversed (i.e., either removed or applied) after 15 min while exercise continued for an additional 15 min. During exercise without LBNP, the increase in body core temperature (esophageal temperature) required to elicit active cutaneous vasodilation averaged 0.25 +/- 0.08 and 0.31 +/- 0.10 degrees C (SE) at control and vasodilator-only skin sites, respectively, and increased to 0.44 +/- 0.10 and 0.50 +/- 0.10 degrees C (P < 0.05 compared with without LBNP) during exercise with LBNP. During exercise baroreceptor unloading delayed the onset of cutaneous vasodilation and limited peak CVC at vasodilator-only skin sites. These data support the hypothesis that during exercise baroreceptor unloading modulates active cutaneous vasodilation.  相似文献   

9.
Endothelin (ET) acts within the central nervous system to increase arterial pressure and arginine vasopressin (AVP) secretion. This study assessed the role of the paraventricular nuclei (PVN) in these actions. Intracerebroventricular ET-1 (10 pmol) or the ET(A) antagonist BQ-123 (40 nmol) was administered in conscious intact or sinoaortic-denervated (SAD) Long-Evans rats with sham or bilateral electrolytic lesions of the magnocellular region of the PVN. Baseline values did not differ among groups, and artificial cerebrospinal fluid (CSF) induced no significant changes. In sham-lesioned rats, ET-1 increased mean arterial pressure (MAP) 15.9 +/- 1.3 mmHg in intact and 22.3 +/- 2.7 mmHg in SAD (P < 0.001 ET-1 vs. CSF) rats. PVN lesions abolished the rise in MAP: -0.1 +/- 2.8 mmHg in intact and 0.0 +/- 2.9 mmHg in SAD. AVP increased in only in the sham-lesioned SAD group 8.6 +/- 3.5 pg/ml (P < 0.001 ET-1 vs. CSF). BQ-123 blocked the responses. Thus the integrity of the PVN is required for intracerebroventricularly administered ET-1 to exert pressor and AVP secretory effects.  相似文献   

10.
Hyperinsulinemia and hyperleptinemia occur concurrently in obese subjects, and both have been suggested to mediate increased blood pressure associated with excess weight gain. The goal of this study was to determine whether chronic hyperleptinemia exacerbates the effects of insulin on arterial pressure and renal function. Group I and II rats were infused with insulin (1.5 mU. kg(-1). min(-1)) for 21 days while maintaining euglycemia. After 7 days of insulin infusion, group II rats received leptin (1.0 microg. kg(-1). min(-1)) for 7 days, concomitant with insulin. Insulin plus glucose infusion reduced food intake to 55 +/- 7% of control, while leptin + insulin lowered food intake further to 22 +/- 4% of the initial control. Insulin initially raised mean arterial pressure (MAP) by 12 +/- 1 mmHg; then MAP declined to 5-8 mmHg above control during continued hyperinsulinemia. Leptin + insulin infusion increased MAP by 7 +/- 2 mmHg above the level observed in rats infused with insulin alone. Insulin raised heart rate (HR) by 17 +/- 5 beats/min, whereas leptin + insulin increased HR by 34 +/- 5 beats/min. Thus leptin appears to increase the effects of insulin to suppress appetite and to raise arterial pressure and HR.  相似文献   

11.
The aim of this study was to elucidate the role of the baroreflex in blood pressure control in sloths, Bradypus variegatus, since these animals show labile levels in this parameter. Unanesthetized cannulated sloths were positioned in an experimental chair and the arterial catheter was coupled to a strain gauge pressure transducer. Blood pressure was monitored before, during and after the administration of phenylephrine (0.0625 to 4 microg/kg) and sodium nitroprusside (0.0625 to 2 microg/kg), bringing about changes in mean blood pressure from +/-30 mmHg in relation to control values. The relation between heart rate changes due to blood pressure variation was estimated by linear regression analysis. The slope was considered the reflex baroreceptor gain. The results (means+/-SD) showed that the reflex baroreceptor gain was -0.3+/-0.1 bpm/mmHg (r=0.88) to phenylephrine and -0.5+/-0.1 bpm/mmHg (r=0.92) to sodium nitroprusside, denoting a reduced reflex baroreceptor gain when compared with other mammals, suggesting that in sloths the baroreceptors are minimally involved in the buffering reflex response to these drugs. These findings suggest that the labile blood pressure could be influenced or be a result of this lowering in the reflex baroreceptor gain.  相似文献   

12.
Recent studies indicate that renal sympathetic nerve activity is chronically suppressed during ANG II hypertension. To determine whether cardiopulmonary reflexes and/or arterial baroreflexes mediate this chronic renal sympathoinhibition, experiments were conducted in conscious dogs subjected to unilateral renal denervation and surgical division of the urinary bladder into hemibladders to allow separate 24-h urine collection from denervated (Den) and innervated (Inn) kidneys. Dogs were studied 1) intact, 2) after thoracic vagal stripping to eliminate afferents from cardiopulmonary and aortic receptors [cardiopulmonary denervation (CPD)], and 3) after subsequent denervation of the carotid sinuses to achieve CPD plus complete sinoaortic denervation (CPD + SAD). After control measurements, ANG II was infused for 5 days at a rate of 5 ng. kg(-1). min(-1). In the intact state, 24-h control values for mean arterial pressure (MAP) and the ratio for urinary sodium excretion from Den and Inn kidneys (Den/Inn) were 98 +/- 4 mmHg and 1.04 +/- 0.04, respectively. ANG II caused sodium retention and a sustained increase in MAP of 30-35 mmHg. Throughout ANG II infusion, there was a greater rate of sodium excretion from Inn vs. Den kidneys (day 5 Den/Inn sodium = 0.51 +/- 0.05), indicating chronic suppression of renal sympathetic nerve activity. CPD and CPD + SAD had little or no influence on baseline values for either MAP or the Den/Inn sodium, nor did they alter the severity of ANG II hypertension. However, CPD totally abolished the fall in the Den/Inn sodium in response to ANG II. Furthermore, after CPD + SAD, there was a lower, rather than a higher, rate of sodium excretion from Inn vs. Den kidneys during ANG II infusion (day 5 Den/Inn sodium = 2.02 +/- 0.14). These data suggest that cardiac and/or arterial baroreflexes chronically inhibit renal sympathetic nerve activity during ANG II hypertension and that in the absence of these reflexes, ANG II has sustained renal sympathoexcitatory effects.  相似文献   

13.
Plasma levels of IL-6 correlate with high blood pressure under many circumstances, and ANG II has been shown to stimulate IL-6 production from various cell types. This study tested the role of IL-6 in mediating the hypertension caused by high-dose ANG II and a high-salt diet. Male C57BL6 and IL-6 knockout (IL-6 KO) mice were implanted with biotelemetry devices and placed in metabolic cages to measure mean arterial pressure (MAP), heart rate (HR), sodium balance, and urinary albumin excretion. Baseline MAP during the control period averaged 114 +/- 1 and 109 +/- 1 mmHg for wild-type (WT) and IL-6 KO mice, respectively, and did not change significantly when the mice were placed on a high-salt diet (HS; 4% NaCl). ANG II (90 ng/min sc) caused a rapid increase in MAP in both groups, to 141 +/- 9 and 141 +/- 4 in WT and KO mice, respectively, on day 2. MAP plateaued at this level in KO mice (134 +/- 2 mmHg on day 14 of ANG II) but began to increase further in WT mice by day 4, reaching an average of 160 +/- 4 mmHg from days 10 to 14 of ANG II. Urinary albumin excretion on day 4 of ANG II was not different between groups (9.18 +/- 4.34 and 8.53 +/- 2.85 microg/2 days for WT and KO mice). By day 14, albumin excretion was nearly fourfold greater in WT mice, but MAP dropped rapidly back to control levels in both groups when the ANG II was stopped after 14 days. Thus the approximately 30 mmHg greater ANG II hypertension in the WT mice suggests that IL-6 contributes significantly to ANG II-salt hypertension. In addition, the early separation in MAP, the albumin excretion data, and the rapid, post-ANG II recovery of MAP suggest an IL-6-dependent mechanism that is independent of renal injury.  相似文献   

14.
Role of cardiopulmonary baroreflexes during dynamic exercise   总被引:2,自引:0,他引:2  
To examine the role of cardiopulmonary (CP) mechanoreceptors in the regulation of arterial blood pressure during dynamic exercise in humans, we measured mean arterial pressure (MAP), cardiac output (Q), and forearm blood flow (FBF) during mild cycle ergometer exercise (77 W) in 14 volunteers in the supine position with and without lower-body negative pressure (LBNP). During exercise, MAP averaged 103 +/- 2 mmHg and was not altered by LBNP (-10, -20, or -40 mmHg). Steady-state Q during exercise was reduced from 10.2 +/- 0.5 to 9.2 +/- 0.5 l/min (P less than 0.05) by application of -10 mmHg LBNP, whereas heart rate (97 +/- 3 beats/min) was unchanged. MAP was maintained during -10 mmHg LBNP by an increase in total systemic vascular resistance (TSVR) from 10.3 +/- 0.5 to 11.4 +/- 0.6 U and forearm vascular resistance (FVR) from 17.5 +/- 1.9 to 23.3 +/- 2.6 U. The absence of a reflex tachycardia or reduction in arterial pulse pressure during -10 mmHg LBNP supports the hypothesis that the increase in TSVR and FVR results primarily from the unloading of CP mechanoreceptors. Because CP mechanoreceptor unloading during exercise stimulates reflex circulatory adjustments that act to defend the elevated MAP, we conclude that the elevation in MAP during exercise is regulated and not merely the consequence of differential changes in Q and TSVR. In addition, a major portion of the reduction in FBF in our experimental conditions occurs in the cutaneous circulation. As such, these data support the hypothesis that CP baroreflex control of cutaneous vasomotor tone is preserved during mild dynamic exercise.  相似文献   

15.
To determine the potential for mechanical stimulation of skeletal muscle to contribute to the reflex cardiovascular response to static contraction (exercise reflex), we examined the cardiovascular effects caused by either passive stretch or external pressure applied to the triceps surae muscles. First, the triceps surae were stretched to an average developed tension of 4.8 +/- 0.3 kg. This resulted in increases in mean arterial pressure (MAP) of 28 +/- 7 mmHg, dP/dt of 1,060 +/- 676 mmHg/s, and heart rate (HR) of 6 +/- 2 beats/min (P less than 0.05). Additionally, increments of 0.3, 0.5, 1.0, 2.0, 4.0, and 8.0 kg of tension produced by passive stretch elicited pressor responses of -6 +/- 1, 7 +/- 1, 16 +/- 3, 21 +/- 8, 28 +/- 6, and 54 +/- 9 mmHg, respectively. External pressure, applied with a cuff to the triceps surae to produce intramuscular pressures (125-300 mmHg) that were similar to those seen during static contraction, also elicited small increases in MAP (4 +/- 1 to 10 +/- 1 mmHg) but did not alter HR. Transection of dorsal roots L5-L7 and S1 abolished the responses to passive stretch and external pressure. Moreover, when the triceps surae were stretched passively to produce a pattern and amount of tension similar to that seen during static hindlimb contraction, a significant reflex cardiovascular response occurred. During this maneuver, the pressor response averaged 51% of that seen during contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Vanilloid type 1 (VR-1) receptors are stimulated by capsaicin and hydrogen ions, the latter being a by-product of muscular contraction. We tested the hypothesis that activation of VR-1 receptors during static contraction contributes to the exercise pressor reflex. We established a dose of iodoresinaferatoxin (IRTX), a VR-1 receptor antagonist, that blocked the pressor response to capsaicin injected into the arterial supply of muscle. Specifically, in eight decerebrated cats, we compared pressor responses to capsaicin (10 mug) injected into the right popliteal artery, which was subsequently injected with IRTX (100 mug), with those to capsaicin injected into the left popliteal artery, which was not injected with IRTX. The pressor response to capsaicin injected into the right popliteal artery averaged 49 +/- 9 mmHg before IRTX and 9 +/- 2 mmHg after IRTX (P < 0.05). In contrast, the pressor response to capsaicin injected into the left popliteal artery averaged 46 +/- 10 mmHg "before" and 43 +/- 6 mmHg "after" (P > 0.05). We next determined whether VR-1 receptors mediated the pressor response to contraction of the triceps surae. During contraction without circulatory occlusion, the pressor response before IRTX (100 mug) averaged 26 +/- 3 mmHg, whereas it averaged 22 +/- 3 mmHg (P > 0.05) after IRTX (n = 8). In addition, during contraction with occlusion, the pressor responses averaged 35 +/- 3 mmHg before IRTX injection and 49 +/- 7 mmHg after IRTX injection (n = 7). We conclude that VR-1 receptors play little role in evoking the exercise pressor reflex.  相似文献   

17.
We have previously reported that both skeletal muscle receptor and arterial baroreceptor afferent inputs activate neurons in the dorsolateral (DL) and lateral regions of the midbrain periaqueductal gray (PAG). In this study, we determined whether the excitatory amino acid glutamate (Glu) is released to mediate the increased activity in these regions. Static contraction of the triceps surae muscle for 4 min was evoked by electrical stimulation of the L7 and S1 ventral roots in cats. Activation of arterial baroreceptor was induced by intravenous injection of phenylephrine. The endogenous release of Glu from the PAG was recovered with the use of a microdialysis probe. Glu concentration was measured by the HPLC method. Muscle contraction increased mean arterial pressure (MAP) from 98 +/- 10 to 149 +/- 12 mmHg (P < 0.05) and increased Glu release in the DL and lateral regions of the middle PAG from 0.39 +/- 0.10 to 0.73 +/- 0.12 microM (87%, P < 0.05) in intact cats. After sinoaortic denervation and vagotomy were performed, contraction increased MAP from 95 +/- 12 to 158 +/- 15 mmHg, and Glu from 0.34 +/- 0.08 to 0.54 +/- 0.10 microM (59%, P < 0.05). The increases in arterial pressure and Glu were abolished by muscle paralysis. Phenylephrine increased MAP from 100 +/- 13 to 162 +/- 22 mmHg and increased Glu from 0.36 +/- 0.10 to 0.59 +/- 0.18 microM (64%, P < 0.05) in intact animals. Denervation abolished this Glu increase. Summation of the changes in Glu evoked by muscle receptor and arterial baroreceptor afferent inputs was greater than the increase in Glu produced when both reflexes were activated simultaneously in intact state (123% vs. 87%). These data demonstrate that activation of skeletal muscle receptors evokes release of Glu in the DL and lateral regions of the middle PAG, and convergence of afferent inputs from muscle receptors and arterial baroreceptors in these regions inhibits the release of Glu. These results suggest that the PAG is a neural integrating site for the interaction between the exercise pressor reflex and the arterial baroreceptor reflex.  相似文献   

18.
Arterial baroreceptors are essential for neurocirculatory control, providing rapid hemodynamic feedback to the central nervous system. The pressure-dependent discharge of carotid and aortic baroreceptor afferents has been extensively studied. A common assumption has been that circumferential deformation of the arterial wall is the predominant mechanical force affecting baroreceptor discharge. However, in vivo the arterial tree is under significant longitudinal tension, leading to the hypothesis that axially directed forces may contribute to baroreceptor function. To test this hypothesis, we utilized a combination of finite element modeling methods and an in vitro rat aortic arch preparation. Model formulation utilized traditional analytic constructs available in the literature followed by refinement of model material parameters through direct comparison of computationally and experimentally generated pressure-diameter curves. The numerical simulations strongly indicated a functional role for axial loading within the region of the baroreceptive nerve terminal. This prediction was confirmed through single-fiber recording of baroreceptor nerve discharge under conditions with and without longitudinal tension in the vessel preparation. The recordings (n = 5) demonstrated that longitudinal tension significantly (P < 0.02) lowered both the pressure threshold (P(th), mmHg) for baroreceptor discharge and sensitivity (S(th), Hz/mmHg). The effect was nearly instantaneous and sustained; i.e., under longitudinal tension average P(th) was 84 +/- 3 mmHg and S(th) was 0.71 +/- 0.15 Hz/mmHg, which immediately increased to a P(th) of 94 +/- 4 mmHg and a S(th) of 1.20 +/- 0.32 Hz/mmHg with loss of axial tension. Possible explanations of how an abrupt change in axial loading could result in a synchronized increase in afferent drive of the baroreceptor reflex, and the potentiating effect this could have on neurogenically mediated orthostatic intolerance are discussed.  相似文献   

19.
The arterial baroreflex pathway provides the fundamental basis for the short-term control of blood pressure via the rapid regulation of the mean level of sympathetic nerve activity (SNA) in response to changes in blood pressure. A central tenet in the generation and regulation of bursts of SNA is that input from the arterial baroreceptors also regulates the timing of the bursts of sympathetic activity. With the use of an implantable telemetry-based amplifier, renal SNA was recorded in intact and arterial baroreceptor-denervated (SAD) conscious rabbits. Data were collected continuously while animals were in their home cage. Mean levels of SNA were not different between SAD and baroreceptor-intact animals. Whereas SNA was unresponsive to changes in blood pressure in SAD rabbits, the timing of the bursts of SNA relative to the arterial pulse wave was maintained (time between the diastolic pressure and the next maximum SNA voltage averaged 107+/-12 ms SAD vs. 105+/-7 ms intact). Transfer function analysis between blood pressure and SNA indicates the average gain at the heart rate frequency was not altered by SAD, indicating strong coupling between the cardiac cycle and SNA bursts in SAD animals. Further experiments in anesthetized rabbits showed that this entrainment is lost immediately after performing baroreceptor denervation surgery and remained absent while the animal was under anesthesia but returned within 20 min of turning off the anesthesia. We propose that this finding indicates the regulation of the mean level of SNA requires the majority of input from baroreceptors to be functional; however, the regulation of the timing of the bursts in the conscious animal requires only minimal input, such as a sensitive trigger mechanism. This observation has important implications for understanding the origin and regulation of SNA.  相似文献   

20.
The goal of this study was to determine the dependence of the acute hypertensive response to a novel model of acute psychosocial stress on the sympathetic and renin-angiotensin systems. Baseline mean arterial pressure (MAP), heart rate (HR), and locomotor activity were measured with telemetry in mice for a 1-h period and averaged 98 +/- 1 mmHg, 505 +/- 3 beats/min, and 5 +/- 1 counts, respectively. Stress was induced by placing a mouse into a cage previously occupied by a different male mouse, and this increased MAP, HR, and activity in the control group by 40 +/- 2 mmHg, 204 +/- 25 beats/min, and 68 +/- 6 counts, respectively. Each variable gradually returned to baseline levels by 90 min after beginning cage switch. Pretreatment with terazosin (10 mg/kg ip) significantly reduced the initial increase in MAP to 12 +/- 6 mmHg, whereas MAP for the last 45 min was superimposable on control values. Atenolol (10 mg/ml drinking water) had no effect to blunt the initial increase in MAP but had a growing effect from 10 min onward, decreasing MAP all the way to baseline by 60 min after starting cage switch. Captopril (2 mg/ml drinking water) treatment caused a very similar response. All three treatments significantly decreased the area under the blood pressure curve, and the blood pressure effect could not be attributed uniformly to effects on HR or activity. These data suggest that our novel model of psychosocial stress causes an initial alpha(1)-receptor-dependent increase in MAP. The later phase of the pressor response is blocked similarly by a beta(1)-receptor antagonist and an ACE inhibitor, independent of HR, suggesting that the beta(1)-dependent blood pressure effect is due, in large part, to the renin-angiotensin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号