首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng G  Song K  Elston RC 《Human heredity》2007,63(3-4):175-186
We study a two-stage analysis of genetic association for case-control studies. In the first stage, we compare Hardy-Weinberg disequilibrium coefficients between cases and controls and, in the second stage, we apply the Cochran- Armitage trend test. The two analyses are statistically independent when Hardy-Weinberg equilibrium holds in the population, so all the samples are used in both stages. The significance level in the first stage is adaptively determined based on its conditional power. Given the level in the first stage, the level for the second stage analysis is determined with the overall Type I error being asymptotically controlled. For finite sample sizes, a parametric bootstrap method is used to control the overall Type I error rate. This two-stage analysis is often more powerful than the Cochran-Armitage trend test alone for a large association study. The new approach is applied to SNPs from a real study.  相似文献   

2.

Background  

We present a general approach to perform association analyses in pedigrees of arbitrary size and structure, which also allows for a mixture of pedigree members and independent individuals to be analyzed together, to test genetic markers and qualitative or quantitative traits. Our software, PedGenie, uses Monte Carlo significance testing to provide a valid test for related individuals that can be applied to any test statistic, including transmission disequilibrium statistics. Single locus at a time, composite genotype tests, and haplotype analyses may all be performed. We illustrate the validity and functionality of PedGenie using simulated and real data sets. For the real data set, we evaluated the role of two tagging-single nucleotide polymorphisms (tSNPs) in the DNA repair gene, NBS1, and their association with female breast cancer in 462 cases and 572 controls selected to be BRCA1/2 mutation negative from 139 high-risk Utah breast cancer families.  相似文献   

3.
The central theme in case-control genetic association studies is to efficiently identify genetic markers associated with trait status. Powerful statistical methods are critical to accomplishing this goal. A popular method is the omnibus Pearson's chi-square test applied to genotype counts. To achieve increased power, tests based on an assumed trait model have been proposed. However, they are not robust to model misspecification. Much research has been carried out on enhancing robustness of such model-based tests. An analysis framework that tests the equality of allele frequency while allowing for different deviation from Hardy-Weinberg equilibrium (HWE) between cases and controls is proposed. The proposed method does not require specification of trait models nor HWE. It involves only 1 degree of freedom. The likelihood ratio statistic, score statistic, and Wald statistic associated with this framework are introduced. Their performance is evaluated by extensive computer simulation in comparison with existing methods.  相似文献   

4.
Two-stage designs in case-control association analysis   总被引:1,自引:0,他引:1       下载免费PDF全文
Zuo Y  Zou G  Zhao H 《Genetics》2006,173(3):1747-1760
DNA pooling is a cost-effective approach for collecting information on marker allele frequency in genetic studies. It is often suggested as a screening tool to identify a subset of candidate markers from a very large number of markers to be followed up by more accurate and informative individual genotyping. In this article, we investigate several statistical properties and design issues related to this two-stage design, including the selection of the candidate markers for second-stage analysis, statistical power of this design, and the probability that truly disease-associated markers are ranked among the top after second-stage analysis. We have derived analytical results on the proportion of markers to be selected for second-stage analysis. For example, to detect disease-associated markers with an allele frequency difference of 0.05 between the cases and controls through an initial sample of 1000 cases and 1000 controls, our results suggest that when the measurement errors are small (0.005), approximately 3% of the markers should be selected. For the statistical power to identify disease-associated markers, we find that the measurement errors associated with DNA pooling have little effect on its power. This is in contrast to the one-stage pooling scheme where measurement errors may have large effect on statistical power. As for the probability that the disease-associated markers are ranked among the top in the second stage, we show that there is a high probability that at least one disease-associated marker is ranked among the top when the allele frequency differences between the cases and controls are not <0.05 for reasonably large sample sizes, even though the errors associated with DNA pooling in the first stage are not small. Therefore, the two-stage design with DNA pooling as a screening tool offers an efficient strategy in genomewide association studies, even when the measurement errors associated with DNA pooling are nonnegligible. For any disease model, we find that all the statistical results essentially depend on the population allele frequency and the allele frequency differences between the cases and controls at the disease-associated markers. The general conclusions hold whether the second stage uses an entirely independent sample or includes both the samples used in the first stage and an independent set of samples.  相似文献   

5.
Tian X  Joo J  Zheng G  Lin JP 《BMC genetics》2005,6(Z1):S107
We studied a trend test for genetic association between disease and the number of risk alleles using case-control data. When the data are sampled from families, this trend test can be adjusted to take into account the correlations among family members in complex pedigrees. However, the test depends on the scores based on the underlying genetic model and thus it may have substantial loss of power when the model is misspecified. Since the mode of inheritance will be unknown for complex diseases, we have developed two robust trend tests for case-control studies using family data. These robust tests have relatively good power for a class of possible genetic models. The trend tests and robust trend tests were applied to a dataset of Genetic Analysis Workshop 14 from the Collaborative Study on the Genetics of Alcoholism.  相似文献   

6.
Zhao Y  Wang S 《Human heredity》2009,67(1):46-56
Study cost remains the major limiting factor for genome-wide association studies due to the necessity of genotyping a large number of SNPs for a large number of subjects. Both DNA pooling strategies and two-stage designs have been proposed to reduce genotyping costs. In this study, we propose a cost-effective, two-stage approach with a DNA pooling strategy. During stage I, all markers are evaluated on a subset of individuals using DNA pooling. The most promising set of markers is then evaluated with individual genotyping for all individuals during stage II. The goal is to determine the optimal parameters (pi(p)(sample ), the proportion of samples used during stage I with DNA pooling; and pi(p)(marker ), the proportion of markers evaluated during stage II with individual genotyping) that minimize the cost of a two-stage DNA pooling design while maintaining a desired overall significance level and achieving a level of power similar to that of a one-stage individual genotyping design. We considered the effects of three factors on optimal two-stage DNA pooling designs. Our results suggest that, under most scenarios considered, the optimal two-stage DNA pooling design may be much more cost-effective than the optimal two-stage individual genotyping design, which use individual genotyping during both stages.  相似文献   

7.
We consider the effect of informative missingness on association tests that use parental genotypes as controls and that allow for missing parental data. Parental data can be informatively missing when the probability of a parent being available for study is related to that parent's genotype; when this occurs, the distribution of genotypes among observed parents is not representative of the distribution of genotypes among the missing parents. Many previously proposed procedures that allow for missing parental data assume that these distributions are the same. We propose association tests that behave well when parental data are informatively missing, under the assumption that, for a given trio of paternal, maternal, and affected offspring genotypes, the genotypes of the parents and the sex of the missing parents, but not the genotype of the affected offspring, can affect parental missingness. (This same assumption is required for validity of an analysis that ignores incomplete parent-offspring trios.) We use simulations to compare our approach with previously proposed procedures, and we show that if even small amounts of informative missingness are not taken into account, they can have large, deleterious effects on the performance of tests.  相似文献   

8.
The most simple and commonly used approach for genetic associations is the case-control study design of unrelated people. This design is susceptible to population stratification. This problem is obviated in family-based studies, but it is usually difficult to accumulate large enough samples of well-characterized families. We addressed empirically whether the two designs give similar estimates of association in 93 investigations where both unrelated case-control and family-based designs had been employed. Estimated odds ratios differed beyond chance between the two designs in only four instances (4%). The summary relative odds ratio (ROR) (the ratio of odds ratios obtained from unrelated case-control and family-based studies) was close to unity (0.96 [95% confidence interval, 0.91-1.01]). There was no heterogeneity in the ROR across studies (amount of heterogeneity beyond chance I(2) = 0%). Differences on whether results were nominally statistically significant (p < 0.05) or not with the two designs were common (opposite classification rates 14% and 17%); this reflected largely differences in power. Conclusions were largely similar in diverse subgroup analyses. Unrelated case-control and family-based designs give overall similar estimates of association. We cannot rule out rare large biases or common small biases.  相似文献   

9.
One way to perform linkage-disequilibrium (LD) mapping of genetic traits is to use single markers. Since dense marker maps-such as single-nucleotide polymorphism and high-resolution microsatellite maps-are available, it is natural and practical to generalize single-marker LD mapping to high-resolution haplotype or multiple-marker LD mapping. This article investigates high-resolution LD-mapping methods, for complex diseases, based on haplotype maps or microsatellite marker maps. The objective is to explore test statistics that combine information from haplotype blocks or multiple markers. Based on two coding methods, genotype coding and haplotype coding, Hotelling's T2 statistics TG and TH are proposed to test the association between a disease locus and two haplotype blocks or two markers. The validity of the two T2 statistics is proved by theoretical calculations. A statistic TC, an extension of the traditional chi2 method of comparing haplotype frequencies, is introduced by simply adding the chi2 test statistics of the two haplotype blocks together. The merit of the three methods is explored by calculation and comparison of power and of type I errors. In the presence of LD between the two blocks, the type I error of TC is higher than that of TH and TG, since TC ignores the correlation between the two blocks. For each of the three statistics, the power of using two haplotype blocks is higher than that of using only one haplotype block. By power comparison, we notice that TC has higher power than that of TH, and TH has higher power than that of TG. In the absence of LD between the two blocks, the power of TC is similar to that of TH and higher than that of TG. Hence, we advocate use of TH in the data analysis. In the presence of LD between the two blocks, TH takes into account the correlation between the two haplotype blocks and has a lower type I error and higher power than TG. Besides, the feasibility of the methods is shown by sample-size calculation.  相似文献   

10.
This protocol details the steps for data quality assessment and control that are typically carried out during case-control association studies. The steps described involve the identification and removal of DNA samples and markers that introduce bias. These critical steps are paramount to the success of a case-control study and are necessary before statistically testing for association. We describe how to use PLINK, a tool for handling SNP data, to perform assessments of failure rate per individual and per SNP and to assess the degree of relatedness between individuals. We also detail other quality-control procedures, including the use of SMARTPCA software for the identification of ancestral outliers. These platforms were selected because they are user-friendly, widely used and computationally efficient. Steps needed to detect and establish a disease association using case-control data are not discussed here. Issues concerning study design and marker selection in case-control studies have been discussed in our earlier protocols. This protocol, which is routinely used in our labs, should take approximately 8 h to complete.  相似文献   

11.
Three lectures on case-control genetic association analysis   总被引:1,自引:0,他引:1  
The purpose of this review is to focus on the three most important themes in genetic association studies using randomly selected patients (case, affected) and normal samples (control, unaffected), so that students and researchers alike who are new to this field may quickly grasp the key issues and command basic analysis methods. These three themes are: elementary categorical analysis; disease mutation as an unobserved entity; and the importance of homogeneity in genetic association analysis.  相似文献   

12.

Background

Infectious disease of livestock continues to be a cause of substantial economic loss and has adverse welfare consequences in both the developing and developed world. New solutions to control disease are needed and research focused on the genetic loci determining variation in immune-related traits has the potential to deliver solutions. However, identifying selectable markers and the causal genes involved in disease resistance and vaccine response is not straightforward. The aims of this study were to locate regions of the bovine genome that control the immune response post immunisation. 195 F2 and backcross Holstein Charolais cattle were immunised with a 40-mer peptide derived from foot-and-mouth disease virus (FMDV). T cell and antibody (IgG1 and IgG2) responses were measured at several time points post immunisation. All experimental animals (F0, F1 and F2, n = 982) were genotyped with 165 microsatellite markers for the genome scan.

Results

Considerable variability in the immune responses across time was observed and sire, dam and age had significant effects on responses at specific time points. There were significant correlations within traits across time, and between IgG1 and IgG2 traits, also some weak correlations were detected between T cell and IgG2 responses. The whole genome scan detected 77 quantitative trait loci (QTL), on 22 chromosomes, including clusters of QTL on BTA 4, 5, 6, 20, 23 and 25. Two QTL reached 5% genome wide significance (on BTA 6 and 24) and one on BTA 20 reached 1% genome wide significance.

Conclusions

A proportion of the variance in the T cell and antibody response post immunisation with an FDMV peptide has a genetic component. Even though the antigen was relatively simple, the humoral and cell mediated responses were clearly under complex genetic control, with the majority of QTL located outside the MHC locus. The results suggest that there may be specific genes or loci that impact on variation in both the primary and secondary immune responses, whereas other loci may be specifically important for early or later phases of the immune response. Future fine mapping of the QTL clusters identified has the potential to reveal the causal variations underlying the variation in immune response observed.  相似文献   

13.
14.
A test statistic that is valid for data collected according to a particular type of family study design is not necessarily valid when applied to data obtained from a different type of family study design. When this can occur, a different test that usually is valid is developed for each type of family study design. However, investigators might find that their data come from two (or more) different family study designs, each requiring a different test, yet they want an overall conclusion, essentially a valid hypothesis test that is as powerful as possible. When the underlying genetic model is unknown, it is not clear how to proceed, as several alternative approaches might appear feasible. By using as an example the development of a test of association for data concerning affected singletons and their parents and affected sib pairs and their parents, it is shown that it may not be possible to develop a universally optimal approach without knowledge of the underlying genetic model.  相似文献   

15.
Wang J  Shete S 《PloS one》2011,6(11):e27642
In case-control genetic association studies, cases are subjects with the disease and controls are subjects without the disease. At the time of case-control data collection, information about secondary phenotypes is also collected. In addition to studies of primary diseases, there has been some interest in studying genetic variants associated with secondary phenotypes. In genetic association studies, the deviation from Hardy-Weinberg proportion (HWP) of each genetic marker is assessed as an initial quality check to identify questionable genotypes. Generally, HWP tests are performed based on the controls for the primary disease or secondary phenotype. However, when the disease or phenotype of interest is common, the controls do not represent the general population. Therefore, using only controls for testing HWP can result in a highly inflated type I error rate for the disease- and/or phenotype-associated variants. Recently, two approaches, the likelihood ratio test (LRT) approach and the mixture HWP (mHWP) exact test were proposed for testing HWP in samples from case-control studies. Here, we show that these two approaches result in inflated type I error rates and could lead to the removal from further analysis of potential causal genetic variants associated with the primary disease and/or secondary phenotype when the study of primary disease is frequency-matched on the secondary phenotype. Therefore, we proposed alternative approaches, which extend the LRT and mHWP approaches, for assessing HWP that account for frequency matching. The goal was to maintain more (possible causative) single-nucleotide polymorphisms in the sample for further analysis. Our simulation results showed that both extended approaches could control type I error probabilities. We also applied the proposed approaches to test HWP for SNPs from a genome-wide association study of lung cancer that was frequency-matched on smoking status and found that the proposed approaches can keep more genetic variants for association studies.  相似文献   

16.
Zhou H  Wei LJ  Xu X  Xu X 《Human heredity》2008,65(3):166-174
In the search to detect genetic associations between complex traits and DNA variants, a practice is to select a subset of Single Nucleotide Polymorphisms (tag SNPs) in a gene or chromosomal region of interest. This allows study of untyped polymorphisms in this region through the phenomenon of linkage disequilibrium (LD). However, it is crucial in the analysis to utilize such multiple SNP markers efficiently. In this study, we present a robust testing approach (T(C)) that combines single marker association test statistics or p values. This combination is based on the summation of single test statistics or p values, giving greater weight to those with lower p values. We compared the powers of T(C) in identifying common trait loci, using tag SNPs within the same haplotype block that the trait loci reside, with competing published tests, in case-control settings. These competing tests included the Bonferroni procedure (T(B)), the simple permutation procedure (T(P)), the permutation procedure proposed by Hoh et al. (T(P-H)) and its revised version using 'deflated' statistics (T(P-H_def)), the traditional chi(2) procedure (T(CHI)), the regression procedure (Hotelling T(2) test) (T(R)) and the haplotype-based test (T(H)). Results of these comparisons show that our proposed combining procedure (T(C)) is preferred in all scenarios examined. We also apply this new test to a data set from a previously reported association study on airway responsiveness to methacholine.  相似文献   

17.
Zheng T  Wang H  Lo SH 《Human heredity》2006,62(4):196-212
BACKGROUND: The studies of complex traits project new challenges to current methods that evaluate association between genotypes and a specific trait. Consideration of possible interactions among loci leads to overwhelming dimensions that cannot be handled using current statistical methods. METHODS: In this article, we evaluate a multi-marker screening algorithm--the backward genotype-trait association (BGTA) algorithm for case-control designs, which uses unphased multi-locus genotypes. BGTA carries out a global investigation on a candidate marker set and automatically screens out markers carrying diminutive amounts of information regarding the trait in question. To address the 'too many possible genotypes, too few informative chromosomes' dilemma of a genomic-scale study that consists of hundreds to thousands of markers, we further investigate a BGTA-based marker selection procedure, in which the screening algorithm is repeated on a large number of random marker subsets. Results of these screenings are then aggregated into counts that the markers are retained by the BGTA algorithm. Markers with exceptional high counts of returns are selected for further analysis. RESULTS AND CONCLUSION: Evaluated using simulations under several disease models, the proposed methods prove to be more powerful in dealing with epistatic traits. We also demonstrate the proposed methods through an application to a study on the inflammatory bowel disease.  相似文献   

18.
Recently genetic epidemiologists have begun using case-control family study designs to investigate the role of genetic and environmental risk factors in disease etiology. The objective of these studies is to assess the association of environmental factors with the disease trait; to characterize the disease genes using segregation analysis; and to quantify the residual familial aggregation after controlling for environmental and genetic factors. Typically these objectives are achieved by conducting separate studies and analysis. This paper describes an estimating equation based approach for a combined association, segregation and aggregation analysis on data from case-control family studies. Simulations indicate that the method performs well in a variety of settings. The method is illustrated using simulated family history data made available to participants in a recent Genetic Analysis Workshop.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号