共查询到20条相似文献,搜索用时 0 毫秒
1.
Microarray technology has produced a huge body of time-course gene expression data. Such gene expression data has proved useful in genomic disease diagnosis and genomic drug design. The challenge is how to uncover useful information in such data. Cluster analysis has played an important role in analyzing gene expression data. Many distance/correlation- and static model-based clustering techniques have been applied to time-course expression data. However, these techniques are unable to account for the dynamics of such data. It is the dynamics that characterize the data and that should be considered in cluster analysis so as to obtain high quality clustering. This paper proposes a dynamic model-based clustering method for time-course gene expression data. The proposed method regards a time-course gene expression dataset as a set of time series, generated by a number of stochastic processes. Each stochastic process defines a cluster and is described by an autoregressive model. A relocation-iteration algorithm is proposed to identity the model parameters and posterior probabilities are employed to assign each gene to an appropriate cluster. A bootstrapping method and an average adjusted Rand index (AARI) are employed to measure the quality of clustering. Computational experiments are performed on a synthetic and three real time-course gene expression datasets to investigate the proposed method. The results show that our method allows the better quality clustering than other clustering methods (e.g. k-means) for time-course gene expression data, and thus it is a useful and powerful tool for analyzing time-course gene expression data. 相似文献
2.
Pan W 《Bioinformatics (Oxford, England)》2006,22(7):795-801
MOTIVATION: Cluster analysis of gene expression profiles has been widely applied to clustering genes for gene function discovery. Many approaches have been proposed. The rationale is that the genes with the same biological function or involved in the same biological process are more likely to co-express, hence they are more likely to form a cluster with similar gene expression patterns. However, most existing methods, including model-based clustering, ignore known gene functions in clustering. RESULTS: To take advantage of accumulating gene functional annotations, we propose incorporating known gene functions as prior probabilities in model-based clustering. In contrast to a global mixture model applicable to all the genes in the standard model-based clustering, we use a stratified mixture model: one stratum corresponds to the genes of unknown function while each of the other ones corresponding to the genes sharing the same biological function or pathway; the genes from the same stratum are assumed to have the same prior probability of coming from a cluster while those from different strata are allowed to have different prior probabilities of coming from the same cluster. We derive a simple EM algorithm that can be used to fit the stratified model. A simulation study and an application to gene function prediction demonstrate the advantage of our proposal over the standard method. CONTACT: weip@biostat.umn.edu 相似文献
3.
It has been increasingly recognized that incorporating prior knowledge into cluster analysis can result in more reliable and meaningful clusters. In contrast to the standard modelbased clustering with a global mixture model, which does not use any prior information, a stratified mixture model was recently proposed to incorporate gene functions or biological pathways as priors in model-based clustering of gene expression profiles: various gene functional groups form the strata in a stratified mixture model. Albeit useful, the stratified method may be less efficient than the global analysis if the strata are non-informative to clustering. We propose a weighted method that aims to strike a balance between a stratified analysis and a global analysis: it weights between the clustering results of the stratified analysis and that of the global analysis; the weight is determined by data. More generally, the weighted method can take advantage of the hierarchical structure of most existing gene functional annotation systems, such as MIPS and Gene Ontology (GO), and facilitate choosing appropriate gene functional groups as priors. We use simulated data and real data to demonstrate the feasibility and advantages of the proposed method. 相似文献
4.
MOTIVATION: Over the last decade, a large variety of clustering algorithms have been developed to detect coregulatory relationships among genes from microarray gene expression data. Model-based clustering approaches have emerged as statistically well-grounded methods, but the properties of these algorithms when applied to large-scale data sets are not always well understood. An in-depth analysis can reveal important insights about the performance of the algorithm, the expected quality of the output clusters, and the possibilities for extracting more relevant information out of a particular data set. RESULTS: We have extended an existing algorithm for model-based clustering of genes to simultaneously cluster genes and conditions, and used three large compendia of gene expression data for Saccharomyces cerevisiae to analyze its properties. The algorithm uses a Bayesian approach and a Gibbs sampling procedure to iteratively update the cluster assignment of each gene and condition. For large-scale data sets, the posterior distribution is strongly peaked on a limited number of equiprobable clusterings. A GO annotation analysis shows that these local maxima are all biologically equally significant, and that simultaneously clustering genes and conditions performs better than only clustering genes and assuming independent conditions. A collection of distinct equivalent clusterings can be summarized as a weighted graph on the set of genes, from which we extract fuzzy, overlapping clusters using a graph spectral method. The cores of these fuzzy clusters contain tight sets of strongly coexpressed genes, while the overlaps exhibit relations between genes showing only partial coexpression. AVAILABILITY: GaneSh, a Java package for coclustering, is available under the terms of the GNU General Public License from our website at http://bioinformatics.psb.ugent.be/software 相似文献
5.
Background
Statistical methods to tentatively identify differentially expressed genes in microarray studies typically assume larger sample sizes than are practical or even possible in some settings. 相似文献6.
MOTIVATION: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. RESULTS: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. AVAILABILITY: EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/ 相似文献
7.
Validating clustering for gene expression data 总被引:24,自引:0,他引:24
MOTIVATION: Many clustering algorithms have been proposed for the analysis of gene expression data, but little guidance is available to help choose among them. We provide a systematic framework for assessing the results of clustering algorithms. Clustering algorithms attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. Our methodology is to apply a clustering algorithm to the data from all but one experimental condition. The remaining condition is used to assess the predictive power of the resulting clusters-meaningful clusters should exhibit less variation in the remaining condition than clusters formed by chance. RESULTS: We successfully applied our methodology to compare six clustering algorithms on four gene expression data sets. We found our quantitative measures of cluster quality to be positively correlated with external standards of cluster quality. 相似文献
8.
Gene-Ontology-based clustering of gene expression data 总被引:2,自引:0,他引:2
The expected correlation between genetic co-regulation and affiliation to a common biological process is not necessarily the case when numerical cluster algorithms are applied to gene expression data. GO-Cluster uses the tree structure of the Gene Ontology database as a framework for numerical clustering, and thus allowing a simple visualization of gene expression data at various levels of the ontology tree. AVAILABILITY: The 32-bit Windows application is freely available at http://www.mpibpc.mpg.de/go-cluster/ 相似文献
9.
Current clustering methods are routinely applied to gene expressiontime course data to find genes with similar activation patternsand ultimately to understand the dynamics of biological processes.As the dynamic unfolding of a biological process often involvesthe activation of genes at different rates, successful clusteringin this context requires dealing with varying time and shapepatterns simultaneously. This motivates the combination of anovel pairwise warping with a suitable clustering method todiscover expression shape clusters. We develop a novel clusteringmethod that combines an initial pairwise curve alignment toadjust for time variation within likely clusters. The cluster-specifictime synchronization method shows excellent performance overstandard clustering methods in terms of cluster quality measuresin simulations and for yeast and human fibroblast data sets.In the yeast example, the discovered clusters have high concordancewith the known biological processes. 相似文献
10.
It has been well established that gene expression data contain large amounts of random variation that affects both the analysis and the results of microarray experiments. Typically, microarray data are either tested for differential expression between conditions or grouped on the basis of profiles that are assessed temporally or across genetic or environmental conditions. While testing differential expression relies on levels of certainty to evaluate the relative worth of various analyses, cluster analysis is exploratory in nature and has not had the benefit of any judgment of statistical inference. By using a novel dissimilarity function to ascertain gene expression clusters and conditional randomization of the data space to illuminate distinctions between statistically significant clusters of gene expression patterns, we aim to provide a level of confidence to inferred clusters of gene expression data. We apply both permutation and convex hull approaches for randomization of the data space and show that both methods can provide an effective assessment of gene expression profiles whose coregulation is statistically different from that expected by random chance alone. 相似文献
11.
Adaptive quality-based clustering of gene expression profiles 总被引:17,自引:0,他引:17
De Smet F Mathys J Marchal K Thijs G De Moor B Moreau Y 《Bioinformatics (Oxford, England)》2002,18(5):735-746
MOTIVATION: Microarray experiments generate a considerable amount of data, which analyzed properly help us gain a huge amount of biologically relevant information about the global cellular behaviour. Clustering (grouping genes with similar expression profiles) is one of the first steps in data analysis of high-throughput expression measurements. A number of clustering algorithms have proved useful to make sense of such data. These classical algorithms, though useful, suffer from several drawbacks (e.g. they require the predefinition of arbitrary parameters like the number of clusters; they force every gene into a cluster despite a low correlation with other cluster members). In the following we describe a novel adaptive quality-based clustering algorithm that tackles some of these drawbacks. RESULTS: We propose a heuristic iterative two-step algorithm: First, we find in the high-dimensional representation of the data a sphere where the "density" of expression profiles is locally maximal (based on a preliminary estimate of the radius of the cluster-quality-based approach). In a second step, we derive an optimal radius of the cluster (adaptive approach) so that only the significantly coexpressed genes are included in the cluster. This estimation is achieved by fitting a model to the data using an EM-algorithm. By inferring the radius from the data itself, the biologist is freed from finding an optimal value for this radius by trial-and-error. The computational complexity of this method is approximately linear in the number of gene expression profiles in the data set. Finally, our method is successfully validated using existing data sets. AVAILABILITY: http://www.esat.kuleuven.ac.be/~thijs/Work/Clustering.html 相似文献
12.
Integrating probe-level expression changes across generations of Affymetrix arrays 总被引:5,自引:0,他引:5
下载免费PDF全文

Elo LL Lahti L Skottman H Kyläniemi M Lahesmaa R Aittokallio T 《Nucleic acids research》2005,33(22):e193
There is an urgent need for bioinformatic methods that allow integrative analysis of multiple microarray data sets. While previous studies have mainly concentrated on reproducibility of gene expression levels within or between different platforms, we propose a novel meta-analytic method that takes into account the vast amount of available probe-level information to combine the expression changes across different studies. We first show that the comparability of relative expression changes and the consistency of differentially expressed genes between different Affymetrix array generations can be considerably improved by determining the expression changes at the probe-level and by considering the latest information on probe-level sequence matching instead of the probe annotations provided by the manufacturer. With the improved probe-level expression change estimates, data from different generations of Affymetrix arrays can be combined more effectively. This will allow for the full exploitation of existing results when designing and analyzing new experiments. 相似文献
13.
Fujisawa H Eguchi S Ushijima M Miyata S Miki Y Muto T Matsuura M 《Bioinformatics (Oxford, England)》2004,20(5):718-726
MOTIVATION: Single nucleotide polymorphisms have been investigated as biological markers and the representative high-throughput genotyping method is a combination of the Invader assay and a statistical clustering method. A typical statistical clustering method is the k-means method, but it often fails because of the lack of flexibility. An alternative fast and reliable method is therefore desirable. RESULTS: This paper proposes a model-based clustering method using a normal mixture model and a well-conceived penalized likelihood. The proposed method can judge unclear genotypings to be re-examined and also work well even when the number of clusters is unknown. Some results are illustrated and then satisfactory genotypings are shown. Even when the conventional maximum likelihood method and the typical k-means clustering method failed, the proposed method succeeded. 相似文献
14.
Bruce A. Rosa Sookyung Oh Beronda L. Montgomery Jin Chen Wensheng Qin 《International Journal of Biochemistry and Molecular Biology》2010,1(1):51-68
Computational analysis methods for gene expression data gathered in microarray experiments can be used to identify the functions of previously unstudied genes. While obtaining the expression data is not a difficult task, interpreting and extracting the information from the datasets is challenging. In this study, a knowledge-based approach which identifies and saves important functional genes before filtering based on variability and fold change differences was utilized to study light regulation. Two clustering methods were used to cluster the filtered datasets, and clusters containing a key light regulatory gene were located. The common genes to both of these clusters were identified, and the genes in the common cluster were ranked based on their coexpression to the key gene. This process was repeated for 11 key genes in 3 treatment combinations. The initial filtering method reduced the dataset size from 22,814 probes to an average of 1134 genes, and the resulting common cluster lists contained an average of only 14 genes. These common cluster lists scored higher gene enrichment scores than two individual clustering methods. In addition, the filtering method increased the proportion of light responsive genes in the dataset from 1.8% to 15.2%, and the cluster lists increased this proportion to 18.4%. The relatively short length of these common cluster lists compared to gene groups generated through typical clustering methods or coexpression networks narrows the search for novel functional genes while increasing the likelihood that they are biologically relevant. 相似文献
15.
Principal component analysis for clustering gene expression data 总被引:15,自引:0,他引:15
MOTIVATION: There is a great need to develop analytical methodology to analyze and to exploit the information contained in gene expression data. Because of the large number of genes and the complexity of biological networks, clustering is a useful exploratory technique for analysis of gene expression data. Other classical techniques, such as principal component analysis (PCA), have also been applied to analyze gene expression data. Using different data analysis techniques and different clustering algorithms to analyze the same data set can lead to very different conclusions. Our goal is to study the effectiveness of principal components (PCs) in capturing cluster structure. Specifically, using both real and synthetic gene expression data sets, we compared the quality of clusters obtained from the original data to the quality of clusters obtained after projecting onto subsets of the principal component axes. RESULTS: Our empirical study showed that clustering with the PCs instead of the original variables does not necessarily improve, and often degrades, cluster quality. In particular, the first few PCs (which contain most of the variation in the data) do not necessarily capture most of the cluster structure. We also showed that clustering with PCs has different impact on different algorithms and different similarity metrics. Overall, we would not recommend PCA before clustering except in special circumstances. 相似文献
16.
Context-specific Bayesian clustering for gene expression data. 总被引:1,自引:0,他引:1
17.
MOTIVATION: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. RESULTS: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. AVAILABILITY: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request. 相似文献
18.
Clustering is an important tool in microarray data analysis. This unsupervised learning technique is commonly used to reveal structures hidden in large gene expression data sets. The vast majority of clustering algorithms applied so far produce hard partitions of the data, i.e. each gene is assigned exactly to one cluster. Hard clustering is favourable if clusters are well separated. However, this is generally not the case for microarray time-course data, where gene clusters frequently overlap. Additionally, hard clustering algorithms are often highly sensitive to noise. To overcome the limitations of hard clustering, we applied soft clustering which offers several advantages for researchers. First, it generates accessible internal cluster structures, i.e. it indicates how well corresponding clusters represent genes. This can be used for the more targeted search for regulatory elements. Second, the overall relation between clusters, and thus a global clustering structure, can be defined. Additionally, soft clustering is more noise robust and a priori pre-filtering of genes can be avoided. This prevents the exclusion of biologically relevant genes from the data analysis. Soft clustering was implemented here using the fuzzy c-means algorithm. Procedures to find optimal clustering parameters were developed. A software package for soft clustering has been developed based on the open-source statistical language R. The package called Mfuzz is freely available. 相似文献
19.
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. 相似文献
20.
An improved algorithm for clustering gene expression data 总被引:1,自引:0,他引:1
MOTIVATION: Recent advancements in microarray technology allows simultaneous monitoring of the expression levels of a large number of genes over different time points. Clustering is an important tool for analyzing such microarray data, typical properties of which are its inherent uncertainty, noise and imprecision. In this article, a two-stage clustering algorithm, which employs a recently proposed variable string length genetic scheme and a multiobjective genetic clustering algorithm, is proposed. It is based on the novel concept of points having significant membership to multiple classes. An iterated version of the well-known Fuzzy C-Means is also utilized for clustering. RESULTS: The significant superiority of the proposed two-stage clustering algorithm as compared to the average linkage method, Self Organizing Map (SOM) and a recently developed weighted Chinese restaurant-based clustering method (CRC), widely used methods for clustering gene expression data, is established on a variety of artificial and publicly available real life data sets. The biological relevance of the clustering solutions are also analyzed. 相似文献