首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new polyclonal antibody to the humanerythrocyte urea transporter UT-B detects a broad band between 45 and65 kDa in human erythrocytes and between 37 and 51 kDa in raterythrocytes. In human erythrocytes, the UT-B protein is the Kidd (Jk)antigen, and Jk(a+b+) erythrocytes express the 45- to 65-kDa band.However, in Jk null erythrocytes [Jk(ab)], only a faint band at55 kDa is detected. In kidney medulla, a broad band between 41 and 54 kDa, as well as a larger band at 98 kDa, is detected. Human and ratkidney show UT-B staining in nonfenestrated endothelial cells indescending vasa recta. UT-B protein and mRNA are detected in rat brain,colon, heart, liver, lung, and testis. When kidney medulla or liverproteins are analyzed with the use of a native gel, only a singleprotein band is detected. UT-B protein is detected in cultured bovineendothelial cells. We conclude that UT-B protein is expressed in morerat tissues than previously reported, as well as in erythrocytes.

  相似文献   

2.
Urea transporter UT-B has been proposed to be the major urea transporter in erythrocytes and kidney-descending vasa recta. The mouse UT-B cDNA was isolated and encodes a 384-amino acid urea-transporting glycoprotein expressed in kidney, spleen, brain, ureter, and urinary bladder. The mouse UT-B gene was analyzed, and UT-B knockout mice were generated by targeted gene deletion of exons 3-6. The survival and growth of UT-B knockout mice were not different from wild-type littermates. Urea permeability was 45-fold lower in erythrocytes from knockout mice than from those in wild-type mice. Daily urine output was 1.5-fold greater in UT-B- deficient mice (p < 0.01), and urine osmolality (U(osm)) was lower (1532 +/- 71 versus 2056 +/- 83 mosM/kg H(2)O, mean +/- S.E., p < 0.001). After 24 h of water deprivation, U(osm) (in mosM/kg H(2)O) was 2403 +/- 38 in UT-B null mice and 3438 +/- 98 in wild-type mice (p < 0.001). Plasma urea concentration (P(urea)) was 30% higher, and urine urea concentration (U(urea)) was 35% lower in knockout mice than in wild-type mice, resulting in a much lower U(urea)/P(urea) ratio (61 +/- 5 versus 124 +/- 9, p < 0.001). Thus, the capacity to concentrate urea in the urine is more severely impaired than the capacity to concentrate other solutes. Together with data showing a disproportionate reduction in the concentration of urea compared with salt in homogenized renal inner medullas of UT-B null mice, these data define a novel "urea-selective" urinary concentrating defect in UT-B null mice. The UT-B null mice generated for these studies should also be useful in establishing the role of facilitated urea transport in extrarenal organs expressing UT-B.  相似文献   

3.
4.
Molecular Mechanisms of Urea Transport   总被引:6,自引:0,他引:6  
Physiologic data provided evidence for specific urea transporter proteins in red blood cells and kidney inner medulla. During the past decade, molecular approaches resulted in the cloning of several urea transporter cDNA isoforms derived from two gene families: UT-A and UT-B. Polyclonal antibodies were generated to the cloned urea transporter proteins, and their use in integrative animal studies resulted in several novel findings, including: (1) UT-B is the Kidd blood group antigen; (2) UT-B is also expressed in many non-renal tissues and endothelial cells; (3) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (4) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; and (5) UT-A protein abundance is increased in uremia in both liver and heart. This review will summarize the knowledge gained from studying molecular mechanisms of urea transport and from integrative studies into urea transporter protein regulation.  相似文献   

5.
The UT-A (SLC14a2) and UT-B (SLC14a1) genes encode a family of specialized urea transporter proteins that regulate urea movement across plasma membranes. In this report, we describe the structure of the bovine UT-B (bUT-B) gene and characterize UT-B expression in bovine rumen. Northern analysis using a full-length bUT-B probe detected a 3.7-kb UT-B signal in rumen. RT-PCR of bovine mRNA revealed the presence of two UT-B splice variants, bUT-B1 and bUT-B2, with bUT-B2 the predominant variant in rumen. Immunoblotting studies of bovine rumen tissue, using an antibody targeted to the NH2-terminus of mouse UT-B, confirmed the presence of 43- to 54-kDa UT-B proteins. Immunolocalization studies showed that UT-B was mainly located on cell plasma membranes in epithelial layers of the bovine rumen. Ussing chamber measurements of ruminal transepithelial transport of (14)C-labeled urea indicated that urea flux was characteristically inhibited by phloretin. We conclude that bUT-B is expressed in the bovine rumen and may function to transport urea into the rumen as part of the ruminant urea nitrogen salvaging process.  相似文献   

6.

Background

Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line.

Methodology/Principal Findings

Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis.

Conclusions/Significance

UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.  相似文献   

7.
The 25-kDa heat-shock protein (Hsp25) is a member of the small heat-shock protein family but its function remains largely unknown. In the present study we examined the expression and cellular localization of Hsp25 mRNA in mice under physiological, unstressed conditions using Northern blot and in situ hybridization analyses with specific oligonucleotide probes. At the organ level, high amounts of Hsp25 mRNA were detected in the oesophagus, skin,eye, stomach, lung and urinary bladder, with moderate amounts in the heart, skeletal muscle, aorta, adrenal gland, ovary, testis, uterus, large intestine, and thymus. At the cellular level, intense to moderate signals for Hsp25 mRNA were localized in the muscle cells of smooth, heart and skeletal types, in the epithelial cells of stratified squamous and transitional types and of the oviduct, in the steroid endocrine cells of the adrenal cortex and corpus luteum, as well as in the spermatocytes of the testis. In contrast, the signal was scarcely detectable in the nervous tissues, lymphatic tissues, the columnar epithelial cells of the digestive tract, or the parenchymal cells of the liver, pancreas and kidney. These results suggest some significant role for Hsp25 in distinct populations of mouse cells under physiological conditions.  相似文献   

8.
We previously identified a novel gene designated retinoid-inducible serine carboxypeptidase (RISC or Scpep1). Here we characterize a polyclonal antibody raised to Scpep1 and assess its localization in mouse cells and tissues. Western blot analysis revealed an immunospecific approximately 35-kDa protein corresponding to endogenous Scpep1. This protein is smaller than the predicted approximately 51-kDa, suggesting that Scpep1 is proteolytically cleaved to a mature enzyme. Immunohistochemical studies demonstrate Scpep1 expression in embryonic heart and vasculature as well as in adult aortic smooth muscle cells and endothelial cells. Scpep1 displays a broad expression pattern in adult tissues with detectable levels in epithelia of digestive tract and urinary bladder, islet of Langerhans, type II alveolar cells and macrophages of lung, macrophage-like cells of lymph nodes and spleen, Leydig cells of testis, and nerve fibers in brain and ganglia. Consistent with previous mRNA studies in kidney, Scpep1 protein is restricted to proximal convoluted tubular epithelium (PCT). Immunoelectron microscopy shows enriched Scpep1 within lysosomes of the PCT, and immunofluorescence microscopy colocalizes Scpep1 with lysosomal-associated membrane protein-2. These results suggest that Scpep1 is a widely distributed lysosomal protease requiring proteolytic cleavage for activity. The highly specific Scpep1 antibody characterized herein provides a necessary reagent for elucidating Scpep1 function.  相似文献   

9.
A urea-selective urine-concentrating defect was found in transgenic mice deficient in urea transporter (UT)-B. To determine the role of facilitated urea transport in extrarenal organs expressing UT-B, we studied the kinetics of [14C]urea distribution in UT-B-null mice versus wild-type mice. After renal blood flow was disrupted, [14C]urea distribution was selectively reduced in testis in UT-B-null mice. Under basal conditions, total testis urea content was 335.4 ± 43.8 µg in UT-B-null mice versus 196.3 ± 18.2 µg in wild-type mice (P < 0.01). Testis weight in UT-B-null mice (6.6 ± 0.8 mg/g body wt) was significantly greater than in wild-type mice (4.2 ± 0.8 mg/g body wt). Elongated spermatids were observed earlier in UT-B-null mice compared with wild type mice on day 24 versus day 32, respectively. First breeding ages in UT-B knockout males (48 ± 3 days) were also significantly earlier than that in wild-type males (56 ± 2 days). In competing mating tests with wild-type males and UT-B-null males, all pups carried UT-B-targeted genes, which indicates that all pups were produced from breeding of UT-B-null males. Experiments of the expression of follicle-stimulating hormone receptor (FSHR) and androgen binding protein (ABP) indicated that the development of Sertoli cells was also earlier in UT-B-null mice than that in wild-type mice. These results suggest that UT-B plays an important role in eliminating urea produced by Sertoli cells and that UT-B deletion causes both urea accumulation in the testis and early maturation of the male reproductive system. The UT-B knockout mouse may be a useful experimental model to define the molecular mechanisms of early puberty. urea transporter; Sertoli cell; testis; male sexual function; spermatogenesis  相似文献   

10.
Molecular and functional characterization of an amphibian urea transporter.   总被引:4,自引:0,他引:4  
We report the characterization of a frog (Rana esculenta) urea transporter (fUT). The cloned cDNA is 1.4 kb long and contains a putative open reading frame of 1203 bp. In frog urinary bladder, the gene is expressed as two mRNAs of 4.3 and 1.6 kb. The fUT protein is 63.1 and 56.3% identical to rat UT-A2 and UT-B1, respectively. The internal duplication of UT-A2 and UT-B, as well as the double LP box urea transporter signature sequence were found in this amphibian urea transporter. When expressed in Xenopus oocytes, fUT induced a 10-fold increase in urea permeability, which was blocked by both phloretin and mercurial reagents. The fUT protein did not transport thiourea, but the fUT-mediated urea transport was strongly inhibited by this compound. Thus, this amphibian urea transporter displays transport characteristics in between those of UT-A2 and UT-B.  相似文献   

11.
12.
The distribution of the secretory pathway Ca2+ -ATPase (SPCA1) was investigated at both the mRNA and protein level in a variety of tissues. The mRNA and the protein for SPCA1 were relatively abundant in rat brain, testis and testicular derived cells (myoid cells, germ cells, primary Sertoli cells and TM4 cells; a mouse Sertoli cell line) and epididymal fat pads. Lower levels were found in aorta (rat and porcine), heart, liver, lung and kidney. SPCA activities from a number of tissues were measured and shown to be particularly high in brain, aorta, heart, fat pads and testis. As the proportion of SPCA activity compared to total Ca2+ ATPase activity in brain, aorta, fat pads and testis were relatively high, this suggests that SPCA1 plays a major role in Ca2+ storage within these tissues. The subcellular localisation of SPCA1 was shown to be predominantly around the Golgi in both human aortic smooth muscle cells and TM4 cells.  相似文献   

13.
Urea transport in the kidney is mediated by a family of transporter proteins, including renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). We aimed to determine whether hydration status affects the subcellular distribution of urea transporters. Male Sprague-Dawley rats were divided into three groups: dehydrated rats (WD) given minimum water, hydrated rats (WL) given 3% sucrose in water for 3 days before death, and control rats given free access to water. We labeled kidney sections with antibodies against UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B using preembedding immunoperoxidase and immunogold methods. In control animals, UT-A1 and UT-A3 immunoreactivities were observed throughout the cytoplasm in inner medullary collecting duct (IMCD) cells, and weak labeling was observed on the basolateral plasma membrane. UT-A2 immunoreactivity in the descending thin limbs (DTL) was observed mainly on the apical and basolateral membranes of type I epithelium, and very faint labeling was observed in the long-loop DTL at the border between the outer and inner medulla. UT-A1 immunoreactivity intensity was markedly lower, and UT-A3 immunoreactivity was higher in IMCD of WD vs. controls. UT-A2 immunoreactivity intensities in the plasma membrane and cytoplasm of type I, II, and III epithelia of DTL were greater in WD vs. controls. In contrast, UT-A1 expression was greater and UT-A2 and UT-A3 expressions were lower in WL vs. controls. The subcellular distribution of UT-A in DTL or IMCD did not differ between control and experimental animals. UT-B was expressed in the plasma membrane of the descending vasa recta of both control and experimental animals. UT-B intensity was higher in WD and lower in WL vs. controls. These data indicate that changes in hydration status over 3 days affected urea transporter protein expression without changing its subcellular distribution.  相似文献   

14.
15.
Aging is commonly associated with defective urine-concentrating ability. The present study examined how the kidney and the brain of senescent (30-mo-old) female WAG/Rij rats respond to dehydration induced by 2 days of water deprivation in terms of urea transporter (UT) regulation. In euhydrated situation, senescent rats exhibited similar vasopressin plasma level but lower urine osmolality and papillary urea concentration and markedly reduced kidney UT-A1, UT-A3, and UT-B1 abundances compared with adult (10-mo-old) rats. Senescent rats responded to dehydration similarly to adult rats by a sixfold increase in vasopressin plasma level. Their papillary urea concentration was doubled, without, however, attaining that of dehydrated adult rats. Such an enhanced papillary urea sequestration occurred with a great fall of both UT-A1 and UT-A3 abundances in the tip of inner medulla and an increased UT-A1 abundance in the base of inner medulla. UT-A2 and UT-B1 were unchanged. These data suggest that the inability of control and thirsted senescent rats to concentrate urine as much as their younger counterparts derives from lower papillary urea concentration. In aging brain, UT-B1 abundance was increased twofold together with a fourfold increase in aquaporin-4 abundance. Dehydration did not alter the abundance of these transporters.  相似文献   

16.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate, arginase can affect the NO synthesis. In the present work, the properties of arginase from the frog Rana temporaria L. urinary bladder epithelial cells possessing the NO-synthase activity were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme had the temperature optimum in the range of 55-60 degrees C, K(m) for arginine 23 mM, and V(max) about 10 nmol urea/mg protein/min, and its activity was effictively inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10(-6) to 10(-4) M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in the isolated urinary bladder epithelial cells was 3 times higher than that in the intact urinary bladder. To evaluate the role of arginase in the regulation of NO production, epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2-, the stable NO metabolite, was determined in the culture fluid after 18-20 h of cells incubation. The vast majority of the produced nitrites are associated with the NOS activity, as L-NAME, the NOS-inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in 199 medium. BEC (10(-4) M) increased the nitrite production by 18.0 % +/- 2.7 in the L-15 medium and by 24.2 +/- 3.5 in the 199 medium (p < 0.05). The obtained data indicate a relatively high arginase activity in the frog urinary bladder epithelium and its involvement in regulation of NO production by epithelial cells.  相似文献   

17.
The distribution of the secretory pathway Ca2+-ATPase (SPCA1) was investigated at both the mRNA and protein level in a variety of tissues. The mRNA and the protein for SPCA1 were relatively abundant in rat brain, testis and testicular derived cells (myoid cells, germ cells, primary Sertoli cells and TM4 cells; a mouse Sertoli cell line) and epididymal fat pads. Lower levels were found in aorta (rat and porcine), heart, liver, lung and kidney.SPCA activities from a number of tissues were measured and shown to be particularly high in brain, aorta, heart, fat pads and testis. As the proportion of SPCA activity compared to total Ca2+ ATPase activity in brain, aorta, fat pads and testis were relatively high, this suggests that SPCA1 plays a major role in Ca2+ storage within these tissues. The subcellular localisation of SPCA1 was shown to be predominantly around the Golgi in both human aortic smooth muscle cells and TM4 cells.  相似文献   

18.
19.
Using the differential hybridization screening method between osteoblastic and fibroblastic cells, a cDNA clone coding for an osteoblast specific protein, named OSF-1, consisting of 168 amino acid residues including a possible 32 amino acid long leader sequence, was isolated from murine osteoblastic cell line MC3T3-E1. The OSF-1 gene was shown by Northern blotting analysis to be expressed in mouse calvarial osteoblast-enriched cells and in mouse brain tissues, but not in thymus, spleen, kidney, liver, lung, testis or heart. The human counterpart was also found in cDNA libraries from human osteosarcoma cell line MG63 and normal brain tissues. DNA sequence analysis revealed four amino acid sequence differences between the mouse and human, of which only one is located in the mature protein. This extremely high sequence conservation suggests that OSF-1 plays a fundamental role in bone and brain functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号