首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Examination of direct and (Cu)-difference spectra of i) the aqueous supernatants of in vitro cultures of bovine rumen contents incubated with MoO42- and potential sources of S2- and ii) samples drawn directly from the rumen of animals receiving high Mo diets yielded evidence of the presence of thiomolybdates. Only MoS42- was detected in the soluble phase of in vitro cultures. Although intense and variable background absorbance precluded full characterization of thiomolybdate species in samples drawn directly from the rumen, both spectral data and the biochemical and clinical responses of animals given high Mo diets were consistent with the conclusion that MoS42- rather than MoOS32- was the predominant thiomolybdate species present in the aqueous phase. Addition of Ca2+ either to rumen cultures before incubation or as a supplement to diets high in MoO42- content inhibited the appearance of MoS42- in the aqueous phase. Evidence of the sequestration of MoS42- and MoOS32- by particulate or microbial fractions of rumen contents is considered in relation to the inhibitory action of Mo upon Cu absorption by ruminants.  相似文献   

2.
3.
The effect ofO-ethyl-S-(2-diisopropylaminoethyl) methylthiophosphonate on rumen bacteria and rumen protozoa was investigated in sheep (after premedication with clinoptilolite-rich zeolite and without that premedication). In control animals a decrease in the total concentration of rumen protozoa was observed 3–7 d after intoxication (particularly in small and large ones). In clinoptilolite-rich-zeolite-treated animals only a slight decrease in protozoan numbers occurred during the first hours after the intoxication. Similarly, in every category of rumen bacteria marked differences between the groups were recorded, particularly in concentration of lipolytic bacteria. The results suggest some protective effect of clinoptilolite-rich zeolite for rumen microbiota against the organophosphate poison.  相似文献   

4.
The effect of rumen microbes on six mycotoxins (aflatoxin B1, ochratoxin A, zearalenone, T-2 toxin, diacetoxyscirpenol, and deoxynivalenol ) considered to be health risks for domestic animals was investigated. The mycotoxins were incubated with intact rumen fluid or fractions of rumen protozoa and bacteria from sheep and cattle in the presence or absence of milled feed. Rumen fluid had no effect on aflatoxin B1 and deoxynivalenol . The remaining four mycotoxins were all metabolized, and protozoa were more active than bacteria. Metabolism of ochratoxin A, zearalenone, and diacetoxyscirpenol was moderately or slightly inhibited by addition of milled feed in vitro. The capacity of rumen fluid to degrade ochratoxin A decreased after feeding, but this activity was gradually restored by the next feeding time. Ochratoxin A was cleaved to ochratoxin alpha and phenylalanine; zearalenone was reduced to alpha-zearalenol and to a lesser degree to beta-zearalenol; diacetoxyscirpenol and T-2 toxin were deacetylated to monoacetoxyscirpenol and HT-2 toxin, respectively. Feeding of 5 ppm (5 mg/kg) of ochratoxin A to sheep revealed 14 ppb (14 ng/ml) of ochratoxin A and ochratoxin alpha in rumen fluid after 1 h, but neither was detected in the blood. Whether such conversions in the rumen fluid may be considered as a first line of defense against toxic compounds present in the diet is briefly discussed.  相似文献   

5.
The effect of rumen microbes on six mycotoxins (aflatoxin B1, ochratoxin A, zearalenone, T-2 toxin, diacetoxyscirpenol, and deoxynivalenol ) considered to be health risks for domestic animals was investigated. The mycotoxins were incubated with intact rumen fluid or fractions of rumen protozoa and bacteria from sheep and cattle in the presence or absence of milled feed. Rumen fluid had no effect on aflatoxin B1 and deoxynivalenol . The remaining four mycotoxins were all metabolized, and protozoa were more active than bacteria. Metabolism of ochratoxin A, zearalenone, and diacetoxyscirpenol was moderately or slightly inhibited by addition of milled feed in vitro. The capacity of rumen fluid to degrade ochratoxin A decreased after feeding, but this activity was gradually restored by the next feeding time. Ochratoxin A was cleaved to ochratoxin alpha and phenylalanine; zearalenone was reduced to alpha-zearalenol and to a lesser degree to beta-zearalenol; diacetoxyscirpenol and T-2 toxin were deacetylated to monoacetoxyscirpenol and HT-2 toxin, respectively. Feeding of 5 ppm (5 mg/kg) of ochratoxin A to sheep revealed 14 ppb (14 ng/ml) of ochratoxin A and ochratoxin alpha in rumen fluid after 1 h, but neither was detected in the blood. Whether such conversions in the rumen fluid may be considered as a first line of defense against toxic compounds present in the diet is briefly discussed.  相似文献   

6.
Growth and survival of rumen fungi   总被引:1,自引:0,他引:1  
The life cycle and growth kinetics of an anaerobic rumen fungus (Neocallimastix R1) in liquid and solid media are described, together with its response to light, temperature and oxygen. These results are discussed in relation to the survival of rumen fungi in saliva and faeces of sheep, and the possible routes for the transfer of anaerobic fungi between ruminants. The thallus and life cycle of Neocallimastix R1 are compared with those of aerobic chytrids.  相似文献   

7.
AIMS: To investigate biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria, and to identify the fungus with the fastest biohydrogenation rate. METHODS AND RESULTS: Biohydrogenation of linoleic acid by mixed rumen fungi and mixed rumen bacteria were compared in vitro. With mixed rumen bacteria, all biohydrogenation reactions were finished within 100 min of incubation and the end product of biohydrogenation was stearic acid. With mixed rumen fungi, biohydrogenation proceeded more slowly over a 24-h period. Conjugated linoleic acid (CLA; cis-9, trans-11 C18 : 2) was an intermediate product, and vaccenic acid (VA; trans-11 C18 : 1) was the end product of biohydrogenation. Fourteen pure fungal isolates were tested for biohydrogenation rate. DNA sequencing showed that the isolate with the fastest rate belonged to the Orpinomyces genus. CONCLUSIONS: It is concluded that rumen fungi have the ability to biohydrogenate linoleic acid, but biohydrogenation is slower in rumen fungi than in rumen bacteria. The end product of fungal biohydrogenation is VA, as for group A rumen bacteria. Orpinomyces is the most active biohydrogenating fungus. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate that rumen fungi can biohydrogenate fatty acids. Fungi could influence CLA content of ruminant products.  相似文献   

8.
The present study gives a critique of the mechanisms involved with the formation of volatile fatty acid (VFA) formed in the lumen of the reticulo-rumen, the absorption of VFA across the reticulo-rumen wall, and the intra-epithelial metabolism of VFA by reticulo-rumen epithelium. In contrast to the empirical treatment of these aspects in previous rumen modelling studies, a mechanistic model was developed which represents each of these aspects separately. Because tissues of the reticulo-rumen may strongly adapt to changing nutritional conditions, this adaptive response was included in the model. The model enabled an evaluation of the implications of VFA yield on the development of the rumen wall, on the transport of VFA, on the extent of intra-epithelial metabolism of VFA, and on the consequences for the supply of VFA to the ruminant. The current modelling effort allowed the integration of existing knowledge on each of these aspects and the model reproduced some essential characteristics of experimental observations on VFA absorption and metabolism. Although further development is still needed, the model appears helpful to distinguish elements that require specific consideration when evaluating rates of net portal appearance of VFA, or when testing hypothesis on the interaction between formation, absorption and intra-epithelial metabolism of VFA under various experimental conditions.  相似文献   

9.
荷斯坦奶牛瘤胃微生物元基因组BAC文库的构建与分析   总被引:13,自引:0,他引:13  
采用未培养技术和脉冲场电泳技术直接从瘤胃微生物提取到大小在2Mb左右混合微生物DNA,经HindⅢ不完全酶切获得50~100kbDNA片段,将其连接在pCC1BAC载体上,转化E.coliEPI300,得到瘤胃微生物BAC文库,经对文库的鉴定分析,该文库的平均插入片段54.5kb,空载体率小于2%,库容837Mb,共保存15360个克隆。通过对该文库进行部分酶活性筛选,获得具有淀粉酶活性的克隆16个;纤维素酶活性的克隆26个,而且能降解纤维素的克隆中25个呈现多酶活性。这些结果表明该文库具有重要研究价值。  相似文献   

10.
Abstract The cryopreservation of an anaerobic rumen fungus, Piromyces communis OTS1, was examined at −84 °C using dimethyl sulfoxide, propylene glycol or ethylene glycol as cryoprotectants. Ethylene glycol was the most effective agent, combining high survival and low toxicity, followed by dimethyl sulfoxide and propylene glycol. Cell-free rumen fluid in the cryopreservation medium decreased the toxicity of the cryoprotectant agents and also had a protective action per se. A survival of 80% after 1 year storage was obtained when samples with an initial zoospore density of 5 × 104 zoospores/ml were equilibrated for 15 min in medium containing 0.64 M ethylene glycol and 5% cell-free rumen fluid, then frozen with dry ice and stored at −84 °C.  相似文献   

11.
Serology of rumen bacteroides   总被引:5,自引:0,他引:5  
  相似文献   

12.
-Fructofuranosidase of rumen protozoa   总被引:3,自引:0,他引:3  
  相似文献   

13.
Methanogen populations in the rumen and in model rumen systems (operated over a 240-h period) were studied using the small subunit (SSU) rRNA phylogenetic framework for group-specific enumerations. Representatives of the family Methanobacteriaceae were the most abundant methanogen population in the rumen, accounting for 89.3% (± 1.02%) of total archaea in the rumen fluid and 99.2% (± 1.8%) in a protozoal fraction of rumen fluid. Their percentage of archaea in the model rumen systems declined from 84% (± 8.5%) to 54% (± 7.8%) after 48 h of operation, correlated with loss of protozoa from these systems. The Methanomicrobiales, encompassed by the families Methanomicrobiaceae, Methanocorpusculaceae, and Methanospirillaceae were the second most abundant population and accounted for 12.1% (± 2.15%) of total SSU rRNA in rumen fluid. Additionally this group was shown to be essentially free living, since only a negligible hybridization signal was detected with the ruminal protozoal fraction. This group constituted a more significant proportion of total archaea in whole rumen fluid, 12.1% (± 2.1%) and model rumen fluid containing no protozoa (26.3 ± 7.7%). In contrast, the Methanosarcinales, generally considered the second most abundant population of rumen methanogens, accounted for only 2.8% (± 0.3%) of total archaeal SSU rRNA in rumen fluid.  相似文献   

14.
15.
This study evaluated the effects of high-grain diets on the rumen fermentation, epithelial bacterial community, morphology of rumen epithelium, and local inflammation of goats during high-grain feeding. Twelve 8-month-old goats were randomly assigned to two different diets, a hay diet or a high-grain diet (65% grain, HG). At the end of 7 weeks of treatment, samples of rumen content and rumen epithelium were collected. Rumen pH was lower (P < 0.05), but the levels of volatile fatty acids and lipopolysaccharides were higher (P < 0.05) in the HG group than those in the hay group. The principal coordinate analysis indicated that HG diets altered the rumen epithelial bacterial community, with an increase in the proportion of genus Prevotella and a decrease in the relative abundance of the genera Shuttleworthia and Fibrobacteres. PICRUSt analysis suggested that the HG-fed group had a higher (P < 0.05) relative abundance of gene families related to energy metabolism; folding, sorting, and degradation; translation; metabolic diseases; and immune system. Furthermore, HG feeding resulted in the rumen epithelial injury and upregulated (P < 0.05) the gene expressions of IL-1β and IL-6, and the upregulations were closely related to the rumen pH, LPS level, and rumen epithelial bacteria abundance. In conclusion, our results indicated that the alterations in the rumen environment and epithelial bacterial community which were induced by HG feeding may result in the damage and local inflammation in the rumen epithelium, warranting further study of rumen microbial–host interactions in the HG feeding model.  相似文献   

16.
17.
18.
Sixteen strains of rumen bacteria and 21 protozoal preparations were screened for glycoside hydrolase and phosphatase activity, using 22 nitrophenyl glycoside substrates. The range and level of bacterial enzyme activities were species dependent, although, the glycosidases associated with plant cell wall breakdown were most active in the cellulolytic and hemicellulolytic species. Alkaline phosphatase occurred widely in the organisms examined, but was most active in the twoBacteroides ruminicola strains.A wide range of enzyme activities was also detected in the holotrich and Entodiniomorphid ciliates isolated from the rumen or cultured in vitro. The glycosidases involved in cellulose and hemicellulose breakdown were detected in all of the protozoa examined, and, with the exception ofEntodinium spp., were most active in the Entodiniomorphid protozoa; -l-arabinofuranosidase, an essential hemicellulolytic glycoside hydrolase, was particularly active in this latter group of ciliates.  相似文献   

19.
20.
Molecular diversity of rumen bacteria belonging to the species Selenomonas ruminantium was evaluated by biochemical and PCR analyses targeted at the 16S rRNA operon and lactate dehydrogenase gene. While extremely variable in metabolic characteristics, two different RISA (ribosomal intergenic spacer analysis), and five lactate dehydrogenase gene RFLP profiles were observed among the twelve strains studied. The strains showed very limited variability ARDRA ( amplified ribosomal DNA restriction analysis) when two different profiles were observed only. 16S rDNA sequence comparisons indicate complex genetic structure within S.ruminantium population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号