首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
In early pregnancy the equine placenta consists of a simple apposition of fetal and maternal epithelia, but it becomes more complex with the formation of microcotyledons between 75 and 100 days of gestation. Although the placental barrier maintains an epitheliochorial arrangement throughout the course of pregnancy, a thinning of the maternal epithelium and a progressive indentation of the chorionic epithelium by fetal capillaries shortens the length of the diffusion pathway and reduces the amount of placental tissue between fetal and maternal bloodstreams. These structural modifications may reflect the changing requirements of the fetus for O2 and other metabolites as gestation proceeds. During the first 200 days of pregnancy there is evidence of intense pinocytotic activity by the cells of the trophoblast. From the 100th day of pregnancy there is a pronounced development of smooth endoplasmic reticulum, while rough endoplasmic reticulum and irregular, dense, membrane-bound bodies are a prominent feature of the paranuclear cytoplasm from Day 200. These changes suggest that the cells of the trophoblast become more highly involved in synthetic processes with increasing gestational age.  相似文献   

2.
3.
Cells capable of suppressing the immune response of PBL to the mitogen PHA are associated with the epitheliochorial placenta during normal first pregnancy in the pig. Because placentation in the pig is noninvasive, these suppressor cells are not associated with decidua. Cells with similar activity are also found between the implantation sites and in the uterus of pseudopregnant pigs, suggesting that fetal trophoblast is not essential for recruitment of intrauterine suppressor cells. Cell separation studies demonstrate that two independent populations of suppressor cells are present in the pig uterus on day 28 of gestation, as well as a population of PHA-responsive cells. The inability of unseparated porcine uterine cells to respond to PHA, plus the reconstitution of suppression in remixing experiments, demonstrate directly that a functional, putative T effector cell population is blocked within the uterus during normal mammalian pregnancy.  相似文献   

4.
Activities of glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49; G6PDH) and malate dehydrogenase (E.C. 1.1.1.37; MDH) were determined fluorometrically in freeze-dried sections of the sheep uterus during the estrous cycle and pregnancy. Samples (0.2–0.3 μg) from the luminal epithelium, uterine glands, maternal caruncles, fetal cotyledons and intercotyledonary trophoblast were assayed in a small aliquot (5 μl) of the reaction medium under oil.Activity of G6PDH in the luminal epithelium, uterine glands and maternal caruncles did not change during the estrous cycle. Activity of MDH in the uterine glands did not change during the cycle, but in the luminal epithelium and maternal caruncles highest activities were found on day 9 and day 2 post-estrus, respectively.The enzyme activities in the fetal tissues were lower than in the maternal tissues. In all maternal tissues, MDH and G6PDH activities decreased during early pregnancy, but after implantation, the activities increased significantly. In fetal tissues G6PDH activity increased, whereas MDH activity decreased during the second half of gestation. These results suggest an increased rate of pentose shunt activity in both maternal and fetal tissues, and an increased rate of Krebs' cycle activity in the maternal but not in the fetal tissues.  相似文献   

5.
6.
The mRNA expression patterns of activin beta(A) and follistatin in the uterus and embryo, the mRNA expression of the activin receptor II in the embryo, and the localization in the uterus of the immunoreactive activin beta(A) and the receptor II proteins in the uterus were examined at gestation days 7-12 after ovulation in pig. Activin was located predominantly at the mesometrial side of the uterus during all stages of pregnancy studied. Follistatin mRNA was absent in the uterus during these stages, suggesting that activin of uterine origin is not inhibited by intra-uterine follistatin. The receptor was localized throughout the glandular and luminal epithelium of the uterus. In the embryo, activin was expressed predominantly in the epiblast before unfolding, but after unfolding of the epiblast activin expression shifted to the trophoblast. The expression pattern of follistatin mRNA was contrarily to that of activin, i.e., before unfolding predominantly in the trophoblast (days 8-9), and shifted to the epiblast at day 10. During streak stages, follistatin was detected in the node and primitive streak. Activin receptor II mRNA was first detected at day 8 in the embryoblast. At day 11, it was expressed in trophoblast cells near the epiblast, and in the first ingressing mesoderm cells. During the streak stages, it was expressed predominantly in the trophoblast. The presence of activin and its receptor in uterine epithelium and early embryonic tissues indicate that both embryonic and uterine activin are involved in intra-uterine processes, such as attachment and early embryonic development. Mol. Reprod. Dev. 59: 390-399, 2001.  相似文献   

7.
Monoclonal antibodies against the cell surface were produced by immunizing mice with endometrial scrapings prepared from 6-day pregnant rabbits. Spleen cells from an immune mouse were fused with myeloma cells and cultured by standard hybridoma technology methods. Hybridoma supernatants were screened for reaction with the apical epithelial surface by immunohistochemistry on frozen sections of uterus from 6-day pregnant rabbits, and positive colonies were cloned by limiting dilution. Ascites fluid was produced in mice from hybridoma clones that gave a consistent pattern of apical epithelial surface staining through 6 sub-clonings. Antibodies in the ascites fluid were tested by immunohistochemistry on frozen sections of uterus, oviduct, lung, liver and kidney from nonpregnant or 6-day pregnant rabbits. At a dilution of 1:5000, the antibodies recognized an antigen that was specific to the apical surface of luminal but not glandular epithelium of the 6-day pregnant uterus and could not be detected in the nonpregnant uterine epithelium. At higher concentrations of antibody (1:100 to 1:1000), crossreaction was seen with antigens in stromal and myometrial cells of pregnant and nonpregnant uterus. At a dilution of 1:5000, the antibody also crossreacted with some components of lung, liver and kidney but without discriminating between the two reproductive states. In the oviduct, staining of the surface epithelium was specific to the pregnant state. We conclude that this monoclonal antibody has a high affinity for a luminal epithelial cell surface antigen in the reproductive tract of the pregnant rabbit and shows multiple organ reactivity with other tissues that is not affected by pregnancy. This antigen will provide a useful cell surface marker of epithelial differentiation in the progestational reproductive tract.  相似文献   

8.
9.
10.
Employing postpubertal testicular tissue, we determined the cDNA coding sequence of a truncated canine relaxin-like factor (RLF) consisting of a signal peptide of 28 amino acids (aa), a B-domain of 23 aa, a truncated C-domain of 34 aa, and an A domain of 26 aa, respectively. Within the B-domain of canine RLF, the putative relaxin receptor binding motif contained a single substitution with the C-terminal arginine replaced by a serine residue, and the putative RLF receptor binding motif was truncated. Leydig cells specifically expressed RLF in the normal postpubertal and cryptochid testis as well as in testicular Leydig cell adenoma. The epididymis was an additional source of RLF in the dog. In the female reproductive tract, expression of immunoreactive RLF and relaxin were compared. Within the ovary, RLF, but not relaxin, was detected in follicular theca interna and granulosa cells and the corpus luteum. In the nonpregnant uterus, luminal and glandular epithelium coexpressed RLF and relaxin. Uteroplacental tissue at early stages of gestation revealed RLF expression in the proliferative fetal villous cytotrophoblast and in maternal uterine cells. In the mature canine placenta, the trophoblast surrounding the maternal blood vessels and the hemophagous cytotrophoblast of the paraplacental zone expressed RLF. Canine relaxin was absent in the paraplacental areas. Western analysis of placental tissue extracts revealed the presence of specific immunoreactive bands likely resembling unprocessed and enzymatically cleaved RLF. Differential expression of RLF and relaxin appears to reflect distinct autocrine and paracrine functions of RLF in canine reproductive tissues.  相似文献   

11.
Type 1 NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) is the key enzyme for metabolism of active primary prostaglandins to inactive forms in gestational tissues. The present study examined the activity and immunolocalization of PGDH in the ovine placenta, fetal membranes and uterus over the latter half of pregnancy, and its potential regulation by oestradiol. Placenta, fetal membranes and myometrium were collected from sheep with known single insemination dates on days 70, 100 and 135 of gestation and in active labour demonstrated by electromyographic activity. In addition, chronically catheterized fetuses were infused with oestradiol (100 microgram kg(-1) per 24 h) (n = 5) or saline vehicle into the fetus from day 120 to day 125. PGDH activity measured in placental extracts remained constant from day 70 to day 135 of gestation, and then significantly (P < 0.05) increased by 300% in active labour. Immunoreactive PGDH was localized in the placentome at all stages and was present predominantly in the fetal component of the placentome in uninucleate, but not in binucleate, trophoblast cells. Similarly, in the fetal membranes PGDH immuno-reactivity was present in the uninucleate trophoblast but not in the binucleate cells of the chorion. PGDH immunostaining was also present in the endometrial luminal epithelium, in the smooth muscle of the myometrium, and the glandular epithelium of the cervix. Infusion of oestradiol into the fetal circulation from day 120 to day 125 of gestation had no effect on placental PGDH activity. Immunohistochemistry was used to localize oestrogen receptor alpha in intrauterine tissues to investigate further the failure of oestradiol to increase PGDH activity. Immunoreactive oestrogen receptor alpha was not present in the fetal component of the placenta, although it was expressed in adjacent maternal-derived cells. It is concluded that (1) PGDH activity increases in late gestation; (2) PGDH is expressed in uninucleate trophoblast cells in the ovine placenta and fetal membranes, and also in the maternal endometrial epithelium and stroma, myometrium and cervix; (3) oestrogen receptor alpha is not expressed in fetal cells in the placenta or fetal membranes; and (4) the increase in PGDH activity is not regulated by oestradiol administered to the fetus.  相似文献   

12.
The concept of placental barrier has been evaluated using recent advances in ultrastructure and in transport physiology. On a structural basis, the barrier effect is grounded by the syncytiotrophoblast continuity, and by basal and plasma membrane's electrical charges and by basement membrane porosity. The aqueous phase continuity for diffusion operates through intercellular gap, fenestrations (rat, rabbit) and transcellular channels (guinea pig). However, these connections are not apparent in the human syncytiotrophobast. For the molecular size selectivity, the hemochorial placentas with a pore radius of 10 nm appear much less selective than the epitheliochorial ones. The metabolic capacity of the placental cells (trophoblast, macrophages) participates to the barrier effect by metabolizing or by converting some substrates. Similarly, trophoblast asymmetry in the location of enzymes, carriers and receptors on outer (maternal side) and on basal (fetal side) plasma membranes, and in the release of secretory products, contributes to maintain separate fetal and maternal compartments. The functional polarity of trophoblast is expressed in metabolism (corticostéroids), nutrients (amino acids) and ions (iron) transport, and most of its secretions (hPL, hCG, SP1).  相似文献   

13.
Transforming growth factor-alpha (TGF-alpha) plays an important role in gastrointestinal pathophysiology. However, the exact location of its expression in the intestine is still controversial. This study systematically compared the localization of TGF-alpha immunoreactivity in frozen or fixed human colon using three different antibodies and examined specificity of antibodies by using tissues from TGF-alpha knockout mice and by Western blotting. Consistent with the mRNA distribution revealed by in situ hybridization, a similar staining pattern was obtained in frozen sections by all three antibodies, localizing on the surface and along the crypt epithelium. In paraffin sections, although the polyclonal antibodies (raised against recombinant human or rat TGF-alpha) gave minimal staining, the monoclonal antibody (against C-terminal peptide of human TGF-alpha) still gave intense staining on the surface and upper crypt epithelium. By using specimens from TGF-alpha knockout mice in immunostaining and Western blotting, the polyclonal antibodies were shown to be specific. In contrast, specificity of the monoclonal antibody was in doubt in rodent tissues because it gave similar detection between wild-type and knockout mice in both analyses, indicating its crossreaction to non-TGF-alpha molecules. In conclusion, frozen sections and antibodies raised from recombinant TGF-alpha should be used for TGF-alpha immunohistochemistry in the colon.  相似文献   

14.
Post-partum placentae and uterine biopsy samples from mares after normal and abnormal foalings are described. After normal delivery there is little damage to fetal or maternal tissues. The villous epitheliochorial palcenta separates cleanly at the maternal-fetal interface and the afterbirth consists almost exclusively of fetal tissue. Uterine involution is well advanced by the 3rd and 4th days post partum and the changes are usually complete by the oestrus 7--10 days after parturition. Placental separation and involution of the uterus appear to proceed normally in malpresented foals and in otherwise viable foals with musculoskeletal defects. In aborted, stillborn or dysmature foals there are obvious signs of damage to both fetal and maternal tissues. It is generally accepted that the growth and development of the fetus is dependent upon a placenta of adequate functional capabilities. The observations suggest that the placenta is similarly dependent upon its association with a normal healthy fetus.  相似文献   

15.
The histomorphometric and proliferative characteristics of the collared peccary (Tayassu tajacu) placenta and uterus were analyzed. The material was examined by standard histological techniques and histochemistry (PAS, Perls and Alcian Blue pH 0.5 and 2.5%) and the cellular proliferation by AgNORs and flow cytometry. All the analyzed morphometric variables differed between pregnant and non-pregnant uteri in the luteal phase using the Dunnet test. Height and gland diameter of uterine glands increased linearly during pregnancy, with an intense positive PAS and Perls reaction in all stages. The cells with more than seven AgNORs per nuclei and the cells in the G2M cell cycle phase in the maternal tissue also increased after 70 days of pregnancy. The uteroplacental ridges had a linear increase in size with two distinct areas, base and top, with uterine epithelium and trophoblastic cells changing their morphology following the placental ridge development. Flow cytometry analysis showed the percentage of cells in each cell cycle phase with a quadratic behavior for stages G2/M in the maternal tissue, suggesting an increase in proliferative capacity of maternal tissue after 65 days of pregnancy. The same quadratic effect was observed in the G0/G1 phase in both maternal and fetal tissues. Cells in apoptosis showed cubic behavior in both tissues. The morphometric and cellular dynamic aspects observed in this study have not been previously described and they extend our knowledge of functions relating to maternal-fetal dynamics in this species.  相似文献   

16.
Placentation involves considerable growth and reorganization of both maternal and fetal tissues. In this investigation, immunohistochemical localization of the proliferation marker Ki-67 antigen was used to monitor cell division during placentation in mares. Endometrial biopsies were obtained from eight mares between day 14 and day 26 of pregnancy and from eight anoestrous mares that had been treated with various combinations of progesterone and oestrogen. Samples of endometrium and fetal membranes were obtained from 19 mares carrying normal horse conceptuses between day 30 and day 250 of gestation and from three failing extraspecific donkey-in-horse pregnancies. Proliferation in the superficial strata of the endometrium was increased by day 18 of gestation and this effect could be mimicked by supplementing with oestradiol benzoate during the last 6 days of a prolonged period (18-36 days) of progesterone administration. Fetal chorionic girdle cells were proliferating vigorously at days 30-32 of gestation, but stopped dividing after they invaded the endometrium, while the trophoblast cells of the allantochorion showed an increase in mitotic activity after day 38. The luminal epithelium of the endometrium started to proliferate only after the primary villi of the true epitheliochorial placenta had been formed, and during days 58-70 this effect was seen only in the pregnant horn in which placentation was further advanced. During the second half of gestation, most of the mitotic activity was confined to the periphery of the microcotyledons which were still growing. In the donkey-in-horse pregnancies, proliferation rates of the maternal and fetal epithelial at day 70 of gestation were markedly reduced in areas of heavy endometrial lymphocyte infiltration and poor placentation. These results provide a basis for further studies on factors that influence invasive and non-invasive placentation.  相似文献   

17.
Tekin S  Hansen PJ 《Theriogenology》2003,59(3-4):787-800
In several species, the trophoblast is resistant to lysis by cytotoxic lymphocytes. Such resistance is believed to contribute to survival of the semiallogenic conceptus. We tested whether ovine chorionic cells are susceptible to lysis by specific and nonspecific cytotoxic lymphocytes in peripheral blood (PBL) and whether cytotoxic cells that can lyse target cells for natural-killer cells are present in the endometrium. Primary chorionic cells from pregnant ewes at Days 51-91 of gestation were labeled with 51Cr and incubated for 20 h at 50:1 and 100:1 ratios with PBL from the pregnant mother or from a third-party ewe. In the absence of interleukin-2 (IL-2), there was no killing of primary chorionic cells by third-party PBL even after infection of chorionic cells with bovine herpes virus-1. Incubation with IL-2-induced cytotoxic action in third-party PBL towards one of six primary chorionic cell preparations only. Primary chorionic cells from two of four placentae were lysed by maternal PBL. Luminal epithelial cells from cyclic ewes and from the pregnant and nonpregnant uterine horns of unilaterally-pregnant ewes were evaluated for the presence of cells capable of killing D17 target cells (a natural-killer cell target). Killing was observed but there was no difference in activity between physiological stages. In contrast, there was intense immunochemical localization of perforin in glandular and luminal endometrial epithelial cells in pregnant ewes, and less intense staining in nonpregnant animals. It is concluded that ovine chorionic cells are generally resistant to killing by natural-killer-like cells and lymphokine-activated killer cells. Generation of maternal cytotoxic lymphocytes against trophoblast can occur in some cases and may contribute to pregnancy loss.  相似文献   

18.
Appropriate integrin expression appears to be necessary for successful implantation of human embryos and varies considerably among species. The present study was undertaken to determine the distributions of integrin subunits alpha(1), alpha(3), and alpha(6) as well as the extracellular matrix (ECM) components collagen IV and laminin in implanting bovine trophoblast and endometrium. Immunohistochemical staining of cryostat sections prepared from nonpregnant endometrium, of preattachment through to early villus development pregnant endometrium (Days 18, 21, 24, and 30), and of isolated trophoblast binucleate cells was performed. Trophoblast down-regulated the integrin alpha(1) subunit as attachment proceeded, whereas reactivity scores for alpha(6) antibody tended to increase from Day 18 through 24 and remained high. A subpopulation of trophoblast binucleate cells expressed the alpha(3) integrin subunit. Uterine epithelium constitutively expressed alpha(3) and alpha(6) integrin subunits, but the alpha(1) subunit was down-regulated as the luminal epithelium was modified. Collagen IV and laminin reactivity increased in the basal lamina and underlying subepithelial stroma as pregnancy proceeded. The results suggest that binucleate cell fusion with the maternal epithelium initiates integrin and ECM changes in the subepithelial stroma.  相似文献   

19.
Nodal, a transforming growth factor beta (TGFB) superfamily member, plays a critical role during early embryonic development. Recently, components of the Nodal signaling pathway were characterized in the human uterus and implicated in the tissue remodeling events during menstruation. Furthermore, the Nodal inhibitor, Lefty, was identified in the mouse endometrium during pregnancy, and its overexpression led to implantation failure. Nonetheless, the precise function and mechanism of Nodal signaling during pregnancy remains unclear. In order to elucidate the potential roles Nodal plays in these processes, we have generated a detailed profile of maternal Nodal expression in the mouse uterus throughout pregnancy. NODAL, although undetectable during the nonpregnant estrus cycle, was localized throughout the glandular epithelium of the endometrium during the peri-implantation period. Interestingly, Nodal expression generated a banding pattern along the proximal-distal axis of the uterine horn on Day 4.5 that directly correlated with blastocyst implantation. Embryo transfer experiments indicate the embryo regulates Nodal expression in the uterus and directs its expression at the time of implantation, restricting NODAL to the sites between implantation crypts. During the later stages of pregnancy, Nodal exhibits a dynamic expression profile that suggests a role in regulating the endometrial response to decidualization and associated trophoblast invasion.  相似文献   

20.
Placentation     
Placental development differs greatly among members of different taxa. Not only does blastocyst attachment take place at different times, the penetration of trophoblast varies considerably. From an epitheliochorial relationship between fetus and mother to the hemochorial placentation of taxa, such as the higher primates, the trophoblast becomes increasingly exposed to maternal immune recognition which may be one cause of rejection in interspecific embryo transfers or hybridization. Shape of uterus and endometrium and genetic factors govern the morphologic form of the placenta. The paper reviews ungulate placentation, successes and failures of interspecific embryo transfers, and the scant knowledge of genetic determinants in primate placentas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号