首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed bilayers of 1-palmitoyl-sn-glycero-3-phosphocholine (palmitoyllysophosphatidylcholine; PaLPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (dipalmitoyl phosphatidylcholine; DPPC) have been investigated by 2H-NMR and 31P-NMR spectroscopy. Binary phospholipid mixtures were studied in which the acyl chains of one or the other component were perdeuterated. At temperatures below the main order-disorder phase transition, the mixed PaLPC/DPPC bilayers appear to coexist with PaLPC micelles. The micelles disappear at temperatures above the phase transition, where mixed bilayers in the liquid-crystalline state are formed. The orientational order of the alkyl chains of the PaLPC component is essentially identical to that of the DPPC component in the mixed bilayers, both in the low temperature and liquid-crystalline phases. However, the presence of PaLPC perturbs the segmental ordering of DPPC as compared to the pure system. The order is increased in the low-temperature phase, where effective diffusion of the chains about their long axes occurs, but is decreased in the liquid-crystalline phase compared to pure DPPC bilayers. The mixed liquid-crystalline bilayers orient preferentially with their director axes perpendicular to the magnetic field. This alignment is easily observed in 31P- and 2H-NMR spectra, where the intensity of the perpendicular edges of the lineshapes is pronounced. One possible explanation of the magnetic alignment involves alteration of the curvature free energy of the DPPC bilayer due to incorporation of PaLPC in the mixed membranes.  相似文献   

2.
Structure of Lipid Tubules Formed from a Polymerizable Lecithin   总被引:1,自引:1,他引:0       下载免费PDF全文
We have studied tubules formed from a polymerizable lipid in aqueous dispersion using freeze-fracture replication and transmission electron microscopy. The polymerizable diacetylenic lecithin 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine converts from liposomes to hollow cylinders, which we call tubules, on cooling through its chain melting phase transition temperature. These tubules differ substantially from cochleate cylinders formed by phosphatidylserines on binding of calcium. The tubules have diameters that range from 0.3 to 1 μm and lengths of up to hundreds of micrometers depending on conditions of formation. The thickness of the walls varies from as few as two bilayers to tens of bilayers in some longer tubules. Their surfaces may be either smooth, gently rippled, or with spiral steps depending on sample preparation conditions, including whether the lipids have been polymerized. The spiral steps may reflect the growth of the tubules by rolling up of flattened liposomes.  相似文献   

3.
Naturally occurring and contaminant ferromagnetic and ferrimagnetic particles have been found within or near cells, and might allow pulsed magnetic fields to create transient cell membrane opening ("pores"). We show that this possibility is significantly constrained by the maximum rotational energy that can be transferred to the cell membrane. For single biologically synthesized magnetosomes (radius rmag approximately 10(-7) m, magnetic moment mu approximately 2 x 10(-15) A m2) and typical cell membranes, the estimated pulse magnitude must exceed Bo approximately 6 x 10(-3) to 7 x 10(-2) T, and the optimal pulse durations are in the range 10(-5) s < tpulse < 10(-1) s. For larger contaminant particles with larger net magnetic moments, the pulse magnitudes could be only somewhat smaller, and the optimal durations are about the same. Very large pulses that exceed the coercive force of a particle are predicted to have a smaller effective magnitude and shorter effective duration.  相似文献   

4.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (T(m)=24 degrees C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at T(m) but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at T(m). These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above T(m) in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above T(m), because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

5.
In this experiment, we evaluated the effects of strong static magnetic fields (SMF) on the orientation of myotubes formed from a mouse-derived myoblast cell line, C2C12. Myogenic differentiation of C2C12 cells was conducted under exposure to SMF at a magnetic flux density of 0-10 T and a magnetic gradient of 0-41.7 T/m. Exposure to SMF at 10 T led to significant formation of oriented myotubes. Under the high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient, myotube orientation increased as the myogenic differentiation period increased. At the 3 T exposure position, where there was a moderate magnetic flux density and moderate magnetic field gradient, myotube orientation was not observed. We demonstrated that SMF induced the formation of oriented myotubes depending on the magnetic flux density, and that a high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient induced the formation of oriented myotubes 6 days after myogenic differentiation. We did not detect any effect of the static magnetic fields on myogenic differentiation or cell number. To the best of our knowledge, this is the first report to demonstrate that myotubes orient to each other under a SMF without affecting the cell number and myogenic differentiation.  相似文献   

6.
Summary Developing transverse (T) tubules are found in embryonic guinea pig ventricular myocardium after approximately eight weeks of gestation. By the time of birth (nine weeks total gestation), longitudinally-oriented axial tubules connected to the T tubules also have formed, and the majority of cells closely resemble those of the adult. The form taken by the developing T and axial tubules suggests that they are generated in a manner similar to that for T tubules in chick and rat skeletal muscle, namely by repeated formation of caveolae.Supported by Public Health Service grant HL-11155. Dr. Forbes was a postdoctoral fellow (1-FO2-HL-51147-01) of the PHS during part of this study.  相似文献   

7.
Phospholipid bilayers consisting of a 60:40 mixture of N-palmitoylsphingomyelin and dimyristoylphosphatidylcholine orient in a strong magnetic field. The orientation is easily observed in 31P- and 2H-nuclear magnetic resonance spectra where the intensity of the perpendicular edges of the powder lineshapes are enhanced. The lineshapes indicate that the long axis of the molecule is perpendicular to the magnetic field.  相似文献   

8.
The Earth's magnetic field and celestial cues provide animals with compass information during migration. Inherited magnetic compass courses are selected based on the angle of inclination, making it difficult to orient in the near vertical fields found at high geomagnetic latitudes. Orientation cage experiments were performed at different sites in high Arctic Canada with adult and young white-crowned sparrows (Zonotrichia leucophrys gambelii) in order to investigate birds' ability to use the Earth's magnetic field and celestial cues for orientation in naturally very steep magnetic fields at and close to the magnetic North Pole. Experiments were performed during the natural period of migration at night in the local geomagnetic field under natural clear skies and under simulated total overcast conditions. The experimental birds failed to select a meaningful magnetic compass course under overcast conditions at the magnetic North Pole, but could do so in geomagnetic fields deviating less than 3 degrees from the vertical. Migratory orientation was successful at all sites when celestial cues were available.  相似文献   

9.
We describe a new system for exposing cultured biological cells that have been plated on coverslips to strong electrostatic fields at magnitudes greater than 10(3) V/cm. Techniques are described that make use of mineral oil to render insignificant electrical conduction currents (total leakage current is less than 1.0 nA or less than 0.1 nA/coverslip), joule heating (less than 10(-6) W), or current-induced magnetic fields (less than 10(-13) T) in regions inhabited by cells. The mineral oil also eliminates a reduction in the strength of the applied field, which otherwise can occur from increased electrode-to-medium impedance at the site of application. Thus the applied field is reliably specified in the vicinity of a cell membrane. Control and electrostatic field chambers are housed in a grounded metal incubator. Cylindrical mu-metal shields can be used to reduce background magnetic fields in each chamber from 40 microT static and approximately 1 microT ac to, respectively, less than 3 microT static and approximately 100 nT ac. Contamination of cells by impurity atoms that may leach from electrodes was measured by atomic-absorption spectrophotometry and found to be negligible. Stray magnetic- and electric-field components within the incubator were measured, as were background fields around the laboratory.  相似文献   

10.
Cannabinoid receptors are G-protein-coupled receptors comprised of seven transmembrane helices. We hypothesized that the extended helix of the receptor interacts differently with POPC bilayers due to the differing distribution of charged amino acid residues. To test this, hCB1(T377-E416) and hCB2(K278-H316) peptides were studied with 31P and 2H solid-state NMR spectroscopy by incorporating them into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine bilayers. Lipid affinities of the 40- and 39-residue peptides were analyzed on the basis of 31P and 2H spectral line shapes, order parameters, and T1 relaxation measurements of the POPC bilayers. Lipid headgroup perturbations were noticed in the 31P NMR spectra in the lipid/peptide mixtures when compared with the pure lipids. 2H order parameters were calculated from the quadrupolar splitting of the de-Paked 2H NMR spectra. At the top of the acyl chain, pure lipids had an average S(CD) approximately = 0.20, whereas S(CD) approximately = 0.16 and S(CD) approximately = 0.18 were found in the presence of hCB1(T377-E416) and hCB2(K278-H316), respectively. S(CD) values decreased in the central part of the acyl chains when compared to the pure POPC lipids, indicating a change in the dynamic properties of the lipid membrane in the presence of the cannabinoid peptides. R(1Z) vs S2(CD) plots exhibited a linear dependency with and without the peptides, with an increase in slope upon addition of the peptides to the POPC, indicating that the dynamics of the lipid bilayer is dominated by fast axially symmetric motion. This study provides insights into the interaction of cannabinoid peptides with the membrane bilayer by investigating the headgroup and acyl chain dynamics.  相似文献   

11.
Intense uniform magnetic fields, such as those used in magnetic resonance imaging (MRI), are thought to exert little influence at the cellular level. Here we report modifications of the signaling cascades in rat cortical neurons cultured for 1 h in magnetic fields of up to 5 Tesla. The activation of c-Jun N-terminal kinase (JNK) increases monotonically with field strength, with a maximal activation of approximately 10% at 5 T, whereas the activation of extra cellular-regulated kinase (ERK) shows a maximum at 0.75 T ( approximately 10%). Since ERK is involved in cellular differentiation, these results indicate a magnetic induction of the signaling events associated with differentiation. However, the cells respond to further increases in field strength by evoking a stress response, since JNK is a stress-activated protein kinase. Three possible mechanisms are discussed and of these, the most plausible is magnetic field induced change in the membrane rest potential, a microscale magnetohydrodynamic effect. This mechanism most likely involves the activation of voltage dependent Ca(2+) channel opening; since intracellular Ca(2+) concentration was also found to be modified by the static magnetic field.  相似文献   

12.
There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.  相似文献   

13.
Molecular dynamics (MD) simulations of fully hydrated bilayers in the liquid-crystalline state made of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) or 1-palmitoyl-2-elaidoyl-phosphatidylcholine (PEPC) were carried out to investigate the effect of the incorporation of a double bond in the phosphatidylcholine (PC) beta-chain (cis or trans) on the membrane/water interface. The bilayers reached thermal equilibrium after 3 and 1 ns of MD simulations, respectively, and productive runs were carried out for 3 ns for each bilayer. As reference systems, the 1,2-dimyristoyl-phosphatidylcholine (DMPC) bilayer (M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi, 1999, Biophys. J. 76:1228-1240) and DMPC-cholesterol (Chol) bilayer containing 22 mol % Chol (M. Pasenkiewicz-Gierula, T. Róg, K. Kitamura, A. and Kusumi, 2000, Biophys. J. 78:1376-1389) were used. The study shows that at the interface of POPC, PEPC, and DMPC-Chol bilayers, average numbers of PC-water and PC-PC interactions are similar and, respectively, greater and smaller than in the DMPC bilayer. The average area/PC in mono-unsaturated bilayers is approximately 4 A(2) larger than in the DMPC bilayer; nevertheless, a strong correlation was found between a single molecular area (SMA) of a PC and the number of interactions this PC makes; i.e., PCs (either saturated or unsaturated) with the same SMA form similar numbers of intermolecular links. The numbers and corresponding SMAs are distributed about averages pertinent to each bilayer. No significant difference between cis and trans bonds was found.  相似文献   

14.
Pressure versus distance relations have been obtained for solid (gel) and neat (liquid-crystalline) phase uncharged lipid bilayers by the use of x-ray diffraction analysis of osmotically stressed monoglyceride aqueous dispersions and multilayers. For solid phase monoelaidin bilayers, the interbilayer repulsive pressure decays exponentially from a bilayer separation of approximately 7 A at an applied pressure of 3 x 10(7) dyn/cm2 to a separation of approximately 11 A at zero applied pressure, where an excess water phase forms. The decay length is approximately 1.3 A, which is similar to the value previously measured for gel phase phosphatidylcholine bilayers. This implies that the decay length of the hydration pressure does not depend critically on the presence of zwitterionic head groups in the bilayer surface. For liquid-crystalline monocaprylin, the repulsive pressure versus distance curve has two distinct regions. In the first region, for bilayer separations of approximately 3-8 A and applied pressures of 3 x 10(8) to 4 x 10(6) dyn/cm2, the pressure decays exponentially with a decay length of approximately 1.3 A. In the second region, for bilayer separations of approximately 8-22 A and applied pressures of 4 x 10(6) to 1 x 10(5) dyn/cm2, the pressure decays much more gradually and is inversely proportional to the cube of the distance between bilayers. These data imply that two repulsive pressures operate between liquid-crystalline monocaprylin bilayers, the hydration pressure, which dominates at small (3-8 A) bilayer separations, and the fluctuation pressure, which dominates at larger bilayer separations (greater than 8 A) and strongly influences the hydration properties of the liquid-crystalline bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The present analysis was stimulated by previous findings on the possible influence of natural ultralow-frequency (ULF; 0.001–10 Hz) geomagnetic field variations on the cardiovascular system and indications of an effect of man-made ULF magnetic fields on the rate of myocardial infarction. In the present study, we considered the occupational health hazards of the strongest ULF magnetic fields in densely populated urban areas. Measurements of ULF magnetic field fluctuations produced by trains powered by DC electricity were performed by means of a computer-based, highly sensitive, three-component magnetometer. We found that the magnitude of magnetic field pulses inside the driver's cab of electric locomotives (ELs) could be ≥ 280 μT in the horizontal component perpendicular to the rails and up to approximately 130 μT in the vertical component, and, in the driver's compartment of electric motor unit (EMU) trains, they were approximately 50 and 35 μT, respectively. We have investigated the relationships between the occupational exposure to ULF magnetic field fluctuations produced by electric trains and cardiovascular diseases (CVDs) among railroad workers in the former Soviet Union. We have analyzed medical statistical data for a period of 3 years for approximately 45,000 railroad workers and 4,000 engine drivers. We have also analyzed 3 years of morbidity data for three subgroups of engine drivers (∼4,000 in each group) operating different types of trains. We find that EL drivers have a twofold increase in risk (2.00 ± 0.27) of coronary heart diseases (CHDs) compared with EMU drivers. Because our analysis of major CVDs shows that the examined subpopulations of drivers can be considered to have had equal exposure to all known risk factors, the elevated CHD risk among EL drivers could be attributed to the increased occupational exposure to ULF magnetic fields. © 1996 Wiley-Liss, Inc.  相似文献   

16.
As they negotiate their environs, unicellular organisms adjust their swimming in response to various physical fields such as temperature, chemical gradients, and electric fields. Because of the weak magnetic properties of most biological materials, however, they do not respond to the earth's magnetic field (5 x 10(-5) Tesla) except in rare cases. Here, we show that the trajectories of Paramecium caudatum align with intense static magnetic fields >3 Tesla. Otherwise straight trajectories curve in magnetic fields and eventually orient parallel or antiparallel to the applied field direction. Neutrally buoyant immobilized paramecia also align with their long axis in the direction of the field. We model this magneto-orientation as a strictly passive, nonphysiological response to a magnetic torque exerted on the diamagnetically anisotropic components of the paramecia. We have determined the average net anisotropy of the diamagnetic susceptibility, Deltachi(p), of a whole Paramecium: Deltachi(p) = (6.7+/- 0.7) x 10(-23) m(3). We show how the measured Deltachi(p) compares to the anisotropy of the diamagnetic susceptibilities of the components in the cell. We suggest that magnetic fields can be exploited as a novel, noninvasive, quantitative means to manipulate swimming populations of unicellular organisms.  相似文献   

17.
R Ghosh 《Biochemistry》1988,27(20):7750-7758
The structural and motional properties of mixed bilayers of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been examined by using wide-line 31P, 14N, and 2H NMR. 2H and 14N NMR data showed that in mixed bilayers containing both PC and PE the conformations of the head-group moieties are essentially identical with those observed for bilayers containing a single phospholipid species. Equimolar amounts of cholesterol induce also only a small change in head-group conformation. 31P T1 relaxation measurements (at 300 MHz) at various temperatures of bilayers containing phospholipids with a mixture of phosphocholine and phosphoethanolamine head-groups and unsaturated fatty acid residues revealed in all cases a clearly defined minimum corresponding to the condition omega O tau C-1 approximately 1. For all phospholipid mixtures studied, the 31P T1 relaxation was homogeneous over the whole powder spectrum and could be fitted to a single-exponential decay. The 31P vs temperature profiles were analyzed by a simple correlation model following the analysis of Seelig et al. (1981) [Seelig, J., Tamm, L., Hymel, L., & Fleischer, S. (1981) Biochemistry 20, 3922-3932]. Rotational diffusion of the phosphate moiety in bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was slower than that of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and the activation energy was increased by a factor of 1.7 to 31.4 kJ mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Deuterium order parameters have been determined for approximately 5 mol% selectively deuterated palmitic acid incorporated into the outer monolayer of high-density lipoproteins (HDL3). The values are SCD = 0.38 for [2,2-2H2]palmitic acid, 0.38 for [4,4-2H2]palmitic acid, 0.37 for [5,5,6,6-2H4]palmitic acid, 0.23 for [11,11,12,12-2H4]palmitic acid, and 0.05 for [16,16,16-2H3]palmitic acid. Comparison of the acyl chain order parameters in HDL3 with acyl chain order parameters determined recently [Parmar, Y.I., Wassall, S.R., & Cushley, R.J. (1984) J. Am. Chem. Soc. 106, 2434-2435] for approximately 5 mol% deuterated palmitic acid in sonicated unilamellar vesicles, composed of the same ratio of phosphatidylcholine/sphingomyelin (85/15 w/w) found in HDL3, shows that acyl chain order in the HDL3 monolayer is approximately 3-5 times higher than in the vesicle bilayer. The acyl chain order in the lipoprotein monolayer is approximately 1.5-2 times higher than in the bilayer of phosphatidylcholine multilamellar dispersions. Deuterium longitudinal relaxation times have been measured for deuterated palmitic acid in HDL3, and the values T1 approximately 16 ms for C2H2 and 170 ms for C2H3 groups are a factor of more than 2 times smaller than found in phospholipid bilayers.  相似文献   

19.
Magic angle spinning (MAS) NMR has been used to investigate the location and orientation of five serotonin receptor 1a agonists (serotonin, buspirone, quipazine, 8-OH-DPAT, and LY-163,165) in single component model lipid and brain lipid membranes. The agonist locations are probed by monitoring changes in the lipid proton chemical shifts and by MAS-assisted nuclear Overhauser enhancement spectroscopy, which indicates the orientation of the agonists with respect to the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids. In the single component bilayer, the membrane agonists are found predominantly in the top of the hydrophobic chain or in the glycerol region of the membrane. Most of the agonists orient approximately parallel to the membrane plane, with the exception of quipazine, whose piperazine ring is found in the glycerol region, whereas its benzene ring is located within the lipid hydrophobic chain. The location of the agonist in brain lipid membranes is similar to the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers; however, many of the agonists appear to locate close to the cholesterol in the membrane in preference to the phospholipids.  相似文献   

20.
Effects of a switched, time-varying 1.7 T magnetic field on Rb(+)(K+) uptake by HeLa S3 cells incubated in an isosmotic high K(+) medium were examined. The magnetic flux density was varied intermittently from 0.07-1.7 T at an interval of 3 s. K(+) uptake was activated by replacement of normal medium by high K(+) medium. A membrane-permeable Ca(2+) chelating agent (BAPTA-AM) and Ca(2+)-dependent K(+) channel inhibitors (quinine, charibdotoxin, and iberiotoxin) were found to reduce the Rb(+)(K+) uptake by about 30-40%. Uptake of K(+) that is sensitive to these drugs is possibly mediated by Ca(2+)-dependent K(+) channels. The intermittent magnetic field partly suppress ed the drug-sensitive K(+) uptake by about 30-40% (P < 0.05). To test the mechanism of inhibition by the magnetic fields, intracellular Ca(2+) concentration ([Ca(2+)]c) was measured using Fura 2-AM. When cells were placed in the high K(+) medium, [Ca(2+)]c increased to about 1.4 times the original level, but exposure to the magnetic fields completely suppressed the increase (P < 0.01). Addition of a Ca(2+) ionophore (ionomycin) to the high K(+) medium increased [Ca(2+)]c to the level of control cells, regardless of exposure to the magnetic field. But the inhibition of K(+) uptake by the magnetic fields was not restored by addition of ionomycin. Based on our previous results on magnetic field-induced changes in properties of the cell membrane, these results indicate that exposure to the magnetic fields partly suppresses K(+) influx, which may be mediated by Ca(2+)-dependent K(+) channels. The suppress ion of K(+) fluxes could relate to a change in electric properties of cell surface and an inhibition of Ca(2+) influx mediated by Ca(2+) channels of either the cell plasma membrane or the inner vesicular membrane of intracellular Ca(2+) stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号