首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human T-cell leukemia virus type I (HTLV-I) can infect a variety of human cell types, but only T lymphocytes are efficiently immortalized after HTLV-I infection. This study reports an attempt to infect and to immortalize NK cells with HTLV-I. Co-cultivation of freshly isolated NK cells with a HTLV-I-producing T cell line did not result in NK cell infection. However, NK cells activated with an anti-CD16 mAb and co-cultivated with a HTLV-I-producing T cell line were reproducibly infected by HTLV-I. HTLV-I infection was documented in NK cell lines and clones by the detection of defective integrated provirus by both Southern blot and polymerase chain reaction analysis. Although HTLV-I-infected NK cells produced viral proteins, they did not produce infectious viral particles. HTLV-I-infected NK cells were phenotypically indistinguishable from their uninfected counterparts (CD16+, CD2+, CD56+, CD3-). They also retained the ability to mediate both natural and antibody-dependent cell cytotoxicity. The IL-2-dependent proliferation of HTLV-I-infected NK cells was significantly greater than that of uninfected NK cells. The doubling time of this infected population was reduced from 9 days to 3 days, and the overall survival of the culture in the absence of restimulation was extended from 5 wk to 18 wk. Unlike T lymphocytes, HTLV-I-infected NK cells were not immortal, implying a fundamental difference between these two lymphocyte populations.  相似文献   

3.
4.
Many human T cell lymphotropic virus-I (HTLV-I) transformed T cells from adult T cell leukemia (ATL) patients continuously produce a humoral factor called ATL-derived factor (ADF) which induces IL-2R/Tac expression on T and NK cells. Using gel filtration, procion red Sepharose, DEAE, and reverse phase chromatography, we have purified ADF protein to homogeneity from 15 liters of serum-free culture supernatant of an HTLV-I(+) T cell line ATL-2. Purified ADF protein had the m.w. of 14,000 by SDS-PAGE and gel filtration, and its isoelectric point is around 5.0. ADF did not react with heteroantibodies against IL-1 alpha and IL-1 beta, which have also IL-2R/Tac-inducing activity on suitable target cells. Partial N-terminal amino acid sequence of ADF is different from other cytokines such as, IFN, BSF-2, and various IL whose cDNA has been cloned. Western blot analysis using rabbit antibodies against N-terminal 10mer synthetic peptide of ADF showed that IL-1 alpha and ADF are different proteins. ADF had its IL-2R/Tac-inducing activity not only on human NK-like cell line YT, but also on HTLV-I(+) T cells, such as ED. In contrast, macrophage-derived IL-1 lacked IL-2R/Tac-inducing activity on ED cells despite their IL-2R/Tac induction on YT, indicating that ADF and IL-1 have their effect via different receptors.  相似文献   

5.
Human T-lymphotropic virus I (HTLV-I) is an etiologic agent in adult T cell leukemia. In an effort to understand the relationship between HTLV-I infection and malignant transformation, we have examined transferrin receptor expression in HTLV-I-infected cells. Transferrin receptor expression in normal T cells is tightly regulated and essential for cell proliferation. We have used matched T cell sets originating from a normal donor, consisting of tetanus toxoid-specific normal T cell clones (TM3 and TM5) and their in vitro HTLV-I-infected counterparts (TM3H and TM5H). Using these matched sets of virus-infected and normal T cells, we have determined that HTLV-I infection leads to hyperexpression of surface transferrin receptors (five- to six-fold higher than normal counterparts). Although the growth rates of the virus-infected cells did not differ significantly from their normal controls, HTLV-I-infected cells constitutively hyperexpressed surface transferrin receptors, whereas the level of surface receptor expression of normal counterpart cells varied during the cycle of antigenic stimulation. Immunoprecipitation of total (surface plus cytoplasmic) transferrin expression showed that the HTLV-I-infected cells did not possess a greater total number of transferrin receptors than their normal counterparts. This data was supported by Northern blot analysis, which showed equivalent transferrin receptor mRNA expression in HTLV-I-infected and uninfected cells. Functional analysis revealed a marked defect in 59Fe-transferrin internalization in the HTLV-I-infected cells. Furthermore, the HTLV-I-infected cells showed markedly decreased transferrin receptor phosphorylation and internalization in response to active phorbol ester. Thus the data demonstrate that in peripheral blood T cells, HTLV-I infection is accompanied by surface transferrin receptor overexpression secondary to subcellular redistribution and defective internalization.  相似文献   

6.
In spite of carrying large amount of Fas death receptor on the cell surface, Human T cell lymphotropic virus type-I (HTLV-I)-infected T cell lines are resistant to Fas-mediated cytotoxicity. We investigated the mechanism(s) of HTLV-I-induced Fas resistance. Western blotting and enzymatic activity analyses revealed that the Fas-elicited apoptotic signal in HTLV-I-infected T cells was intervened at the level(s) prior to the activation of caspase-8. Upon stimulation, the clustering of Fas receptors scarcely occurred in HTLV-I-infected cells. Cycloheximide treatment converted the resistant cells to sensitive cells; the presence of short-lived anti-apoptotic molecule(s) that can block the caspase-8 activation within HTLV-I-infected T cells is suggested.  相似文献   

7.
8.
We established rat T cell lines expressing human T cell leukemia virus type I (HTLV-I) Ag from inbred strains of rats, WKA/H, DA, and F344, to study CTL response against the HTLV-I-infected cells. HTLV-I-specific Ag expressed in these rat cells were HTLV-I gag Ag, p19, p24, and p15, and pX Ag, p40tax and p27rex, but not env Ag, as determined by immunofluorescence and immunoblot assays. By immunization of rats with syngeneic HTLV-I-infected cells, CTL against syngeneic HTLV-I-infected cells and antibodies to HTLV-I Ag were generated in WKA/H and DA rats. The bulk CTL cultures from WKA/H and DA rats lysed specifically syngeneic SV40-transformed kidney cells infected with recombinant vaccinia viruses (RVV) expressing HTLV-I gag and pX Ag, but not those infected with RVV expressing HTLV-I env Ag or a control vaccinia virus. From WKA/H rat CTL cultures, four CTL clones reactive with syngeneic HTLV-I-infected cells were isolated, three of which were specific for p27rex/p21x, but the Ag recognized by the other CTL clone was not defined with any RVV used. These results indicate that HTLV-I gag and pX gene products are recognized by MHC-restricted rat CTL specific for syngeneic HTLV-I-infected cells.  相似文献   

9.
10.
That HTLV-I infects CD4(+) T cells and enhances their cell growth has been shown as successful long-term in vitro proliferation in the presence of IL-2. It is known that T cells isolated from HAM patients possess strong ability for cell proliferation in vitro and mRNA of various cytokines are abundantly expressed in CNS tissues of HAM patients. Hence, the cytokine-induced proliferation could have an important role in pathogenesis and immune responses of HAM. In this study, we examined the relationship between cell proliferation and ability of in vitro cytokine production of CD4(+) T cell clones isolated from HAM patients. We started a culture from a single cell to isolate cell clones immediately after drawing blood from the patients using limiting dilution method, which could allow the cell to avoid in vitro HTLV-I infection after initiation of culture. Many cell clones were obtained and the rate of proliferation efficiency from a single cell was as high as 80%, especially in the 4 weeks' culture cells from HAM patients. These cells were classified as mainly Th0 phenotype that produce both IFN-gamma and IL-4 after CD3-stimulation. However, the frequency of proviral DNA in these cloned cells was significantly low. Our results indicate that the ability of cell proliferation in HAM patients is not restricted in HTLV-I-infected T cells. HTLV-Iuninfected CD4(+) T cells, mainly Th0 cells, also have a strong ability to respond to IL-2-stimulation, showing that unusual immune activation on T cells has been observed in HAM patients.  相似文献   

11.
To study the possible involvement of human T lymphotrophic virus type I (HTLV-I) or a related retrovirus in Japanese cases of multiple sclerosis (MS), we first performed a Western blot analysis with purified Ag of HTLV-I. Ten out of 31 MS patients (32.2%), 19 of 66 patients (28.8%) with other neurologic diseases, and 2 of 64 healthy blood donors (3.1%) had antibodies reactive with Ag corresponding to the group-specific Ag (gag) proteins (p15, p19, p24) on their sera. There were no significant differences between MS and other neurologic diseases concerning the patterns and the frequency. Second, we tried to establish T cell lines from PBMC of 22 MS patients with crude IL-2 without accessory cells, because HTLV-I-infected T cells can be immortalized in a high ratio under those conditions. Only one T cell line (MS-14C), however, could be maintained in long term culture. MS-14C and cultured T cells for 3 to 5 wk derived from MS patients were examined by Southern blot analysis under both stringent and low stringent conditions with HTLV-I as a probe. No HTLV-I related bands could be detected. By polymerase chain reaction examination, we also could not detect HTLV-I provirus genome in the fresh PBMC from 20 MS patients, although some of them had gag-reactive antibodies. Our data do not favor the hypothesis of HTLV-I or an HTLV-I-related human retrovirus in the etiology of MS.  相似文献   

12.
The effect of human T cell leukemia/lymphoma virus type I (HTLV-I) infection on the function and the phenotype of a human proliferating/cytotoxic T cell clone, specific for tetanus toxin, was investigated. During the period after infection, two distinct phases were observed, based on growth properties, phenotype, and functional activity of the infected cells. Phase I HTLV-I infected cells (0 to about 150 days after infection) proliferated in an IL-2-dependent way, but without the requirement for repetitive antigenic stimulation. No differences in expression of the CD2, CD3, CD4, Tp103, and CD28 Ag between these cells and the parental cells could be demonstrated, with the exception of the expression of IL-R p55 and HLA-DR Ag, which were constitutively expressed on the phase I cells. The phase I HTLV-I-infected cells, as well as the parental 827 cells reacted with a mAb specific for an epitope on the variable part of the TCR beta-chain, indicating that the TCR was not altered after HTLV-I infection. Like the parental clone, the phase I cells proliferated in response to tetanus toxin, but the tetanus toxin-specific response of the phase I cells did not require the presence of APC. Results of experiments, in which the levels of intracellular Ca2+ were measured, indicated that HTLV-I cells can acquire the capability to process Ag and present that to themselves. Phase I HTLV-I-infected T cells had lost their cytotoxic activity which was likely to be due to an effect on the lytic machinery rather than on Ag recognition by the TCR, inasmuch as it was found that phase I HTLV-I-infected T cells did no longer contain N-alpha-benzyloxy-L-lysine thiobenzylester-serine esterase activity. Furthermore, it was found that phase I HTLV-I-infected T cells had a diminished capacity to form conjugates with target cells. From a period of about 200 days after HTLV-I infection, phase II cells emerged that proliferated strongly in the absence of IL-2 and that had lost all functional activity. These cells did not express the CD3/T cell receptor complex on their surface. Phase I as well as phase II HTLV-I-infected cells were targets for CTL raised in the autologous donor.  相似文献   

13.
We analyzed human T cell lymphotrophic virus type I (HTLV-I)-infected T cells for the presence of mRNA coding for parathyroid hormone-related protein (PTHrP) by Northern blotting using synthetic DNA probes. We report here that PTHrP mRNAs were detected in a HTLV-I-infected T cell line, MT-2, but not in uninfected T cell or B cell lines, and that PTH-like bioactivity was detected only in the conditioned medium of MT-2 cells. Our study suggests that the pathophysiology of hypercalcemia in patients with adult T cell leukemia/lymphoma may resemble that which occurs with solid tumors.  相似文献   

14.
Interleukin 1 alpha mRNA in virus-transformed T and B cells   总被引:2,自引:0,他引:2  
IL-1 alpha cDNA clone was isolated from a T cell line infected by the human T lymphotropic retrovirus type-I (HTLV-I/ATLV). We found significant amounts of mRNA hybridizing to IL-1 alpha cDNA not only in HTLV-I-transformed T cells but also in Epstein-Barr Virus-transformed B cells. A part of IL-2 receptor inducing activity in Adult T cell leukemia (ATL) cell line seems to be due to IL-1 alpha.  相似文献   

15.
In an attempt to understand the mechanisms of immunodeficiency induced by human T lymphotropic virus type I (HTLV-I), HSV-specific CD4+ human multifunctional T cell clones were infected with HTLV-I in vitro. Early after HTLV-I infection, when their growth was still IL-2-dependent, clones were found to have almost completely lost their cytotoxic activity. At that time, their HSV-Ag-induced proliferative response and helper function for anti-HSV antibody production by B cells were only partially impaired. After this initial phase, the HTLV-I-infected clone became IL-2-independent, and the helper function was also completely lost. IL-2-dependent HTLV-I-infected clones showed degrees of proliferative response and elevation of intracellular free Ca2+ concentration induced by anti-CD3 mAb equivalent to those of HTLV-I-uninfected clones. On the other hand, during the IL-2-independent stage, expression of CD3-TCR complex on the cell surface was markedly decreased, and no significant elevation of intracellular free Ca2+ concentration was detected in response to anti-CD3 mAb. These data indicated that the loss of cytotoxic activity of HSV-specific T cell clones observed early after HTLV-I infection was not the result of impaired antigen recognition via the CD3-TCR complex, but might be due to dysfunction in the effector phase. On the other hand, the dysfunction of helper activity found late after HTLV-I infection might have mainly occurred in the recognition phase due to the decreased expression of CD3-TCR complex. The present data appear to suggest certain aspects of the pathogenesis of the immunodeficiency occurring in HTLV-I infection.  相似文献   

16.
Kannagi M 《Uirusu》2004,54(1):67-74
Adult T-cell leukemia (ATL) occurs in a small population of human T-cell leukemia virus type I (HTLV-I)-infected individuals. It has been noted that ATL is incidentally associated with mother-to-child infection which occurs mainly through breast-feeding, elevated levels of proviral load, and insufficiency in HTLV-I-specific cytotoxic T lymphocyte (CTL) responses. Among these, anti-tumor potentials of HTLV-I-specific CTL have been shown in ex vivo analysis of human HTLV-I-infected individuals and also in vivo experiments by using rat models of HTLV-I-infected lymphomas. In another rat model of HTLV-I-infection, orally infected rats showed significantly higher HTLV-I proviral load but lower HTLV-I-specific cellular immune responses than in intraperitoneally infected rats. As a result, persistent viral load was inversely correlated with levels of virus-specific T-cell responses. HTLV-I-specific T-cell responses in orally infected rats recovered by re-immunization. Conversion of Tax-specific T-cell responses from low to high levels was also observed in an ATL patient who obtained complete remission after hematopoietic stem cell transplantation. These findings suggest that HTLV-I-specific immune unresponsiveness associated with oral HTLV-I infection may be a potential risk factor for development of ATL, allowing expansion of the infected cell reservoir in vivo, and that immunological strategies targeting Tax may potentially reduce the risk of ATL and induce therapeutic effects on ATL.  相似文献   

17.
In this study we report the case of an acute form of ATL in a HTLV-I-infected Nigeria-born 27-year-old female prostitute living in Italy from February, 2001. The presence of HTLV-I infection was demonstrated by the detection of serum antibody to HTLV-I by immunoenzymatic assay and western blot analysis. In addition, the presence of HTLV-I proviral DNA was confirmed by a hemi-nested PCR in a sample of peripheral blood mononuclear cells. From an epidemiological point of view, it is important to report new cases of imported ATL, as it may explain the otherwise untraceable origin of some rare and apparently autochthonous cases of ATL in non-endemic areas.  相似文献   

18.
Yasunaga J  Matsuoka M 《Uirusu》2006,56(2):241-249
Human T-cell leukemia virus type I (HTLV-I) is a causative virus of adult T-cell leukemia (ATL). ATL is a highly aggressive neoplastic disease of CD4 positive T lymphocyte, which is featured by the pleomorphic tumor cells with hypersegmented nuclei, called " flower cell". HTLV-I increases its copy number by clonal proliferation of the host cells, not by replication of the virus. Therefore, HTLV-I eventually induces ATL. Tax, encoded by HTLV-I pX region, has been recognized as a protein that plays a central role of the transformation of HTLV-I-infected cells by its pleiotropic actions. However, fresh ATL cells frequently lose Tax protein expression by several mechanisms. Recently, HBZ was identified in the complementary strand of HTLV-I and it is suggested that HBZ is a critical gene in leukemogenesis. Furthermore, there is a long latency period before onset of ATL, indicating the multistep mechanisms of leukemogenesis. Therefore, it is suggested that multiple factors, such as viral proteins, genetic and epigenetic changes of host genome, and immune status of the hosts, could be implicated in leukemogenesis of ATL.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号