首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent experiments indicate that prostaglandin E2 potentiates the vasodilatory properties of leukotrienes in the skin microcirculation. The present experiments were undertaken to study the effect of leukotriene D4 and prostaglandin E2 on renal hemodynamics and urinary electrolytes in the dog. Experiments were performed in three groups of anesthetized Mongrel dogs: the first group was studied under hydropenia, whereas the two remaining groups were studied during water diuresis with (Group 3) or without indomethacin (Group 2). LTD4 (100 ng/min) and PGE2 (3 ug/min) were infused in the left renal artery to minimize systemic effects of these compounds. LTD4 alone failed to influence urinary sodium excretion in all 3 groups. In Group 1, urinary sodium increased from 77 +/- 6 to 393 +/- 74 uEq/min during PGE2, and further increased to 511 +/- 52 uEq/min during LTD4 + PGE2. No change occurred in the contralateral right kidney. In this group, glomerular filtration as well as renal plasma flow were not statistically influenced. In Group 2, the same phenomenon was observed for urinary sodium. The combined infusion of LTD4 + PGE2 increased urinary sodium without significant changes in glomerular filtration and renal plasma flow. Finally, in Group 3, indomethacin was shown to reduce the natriuretic effects of LTD4 and PGE2: during PGE2 alone, urinary sodium increased from 90 +/- 14 to 260 +/- 66 uEq/min, and only rose from 80 +/- 10 to 175 +/- 19 uEq/min during the combined infusion of LTD4 and PGE2. In groups 2 and 3, free water clearance was utilized as an index of sodium chloride reabsorption in the thick ascending limb: this parameter increased from 2.35 +/- 0.25 to 4.70 +/- 0.30 ml/min, while urinary volume was increasing from 3.55 +/- 0.25 to 10.05 +/- 0.65 ml/min, during LTD4 + PGE2. Indomethacin, administered in Group 3, (3 mg/kg/hr) again abolished the effect of combined PGE2 + LTD4. These results indicate a potentiating effect of leukotriene D4 on the PGE2-induced natriuresis in the anesthetized dog. These phenomena occurred in the absence of significant changes in renal hemodynamics, therefore suggesting a direct tubular effect of these arachidonic acid metabolites. Finally, the water diuresis experiments suggest a proximal site of action of PGE2 and LTD4.  相似文献   

2.
To determine whether the renal vascular effect of arginine vasopressin (AVP) is modulated by renal prostaglandin E2 (PGE2) were determined during the infusion of AVP in dogs during control conditions and after the administration of the inhibitor of prostaglandin synthesis, indomethacin. During control conditions, intrarenal administration for 10 min of a dose of AVP calculated to increase arterial renal plasma AVP concentration by 75 pg/ml produced a slight renal vasodilation (p<0.01) and an increase in renal venous plasma concentration of PGE2. Renal venous PGE2 concentration during control and AVP infusion averaged 33 ± 7 and 52 ± 12 pg/ml (p<0.05), respectively. After administration of indomethacin, the same dose of AVP induced renal vasoconstriction (p<0.05) and failed to enhance renal venous PGE2 concentration (9 ± 1 to 8 ± 1 pg/ml). Intrarenal administration of 20 ng/kg. min of AVP for 10 min induced a marked renal vasoconstriction (p<0.01) and increased renal venous plasma PGE2. Renal venous PGE2 during control and AVP infusion averaged 31 ± 10 and 121 ± 31 pg/ml (p<0.01), respectively. Administration of the same dose of AVP following indomethacin produced a significantly greater and longer lasting renal vasoconstriction (p<0.01) and failed to increase renal venous plasma PGE2 (10 ± 1 to 9 ± 1 pg/ml). These results indicate that a concentration of AVP comparable to that observed in several pathophysiological conditions induces a slight renal vasodilation which is mediated by renal prostaglandins. The results also indicate that higher doses of AVP induce renal vasoconstriction and that prostaglandin synthesis induced by AVP attenautes the renal vasoconstriction produced by this peptide.  相似文献   

3.
The effect of micropuncture of the renal papilla through an intact ureter on urinary concetrating ability of rats was examined. Micropuncture of the renal papilla caused a fall in urine osmolality in the punctured kidney from 1718 ± 106 to 1035 ± 79 mosmol/kg·H2O. In order to investigate the role of renal prostaglandins in this process, PGE2 excretion was measured and found to increase from 63.4 ± 14.0 to 205.5 ± 57.1 pg/min. Urine osmolality and PGE2 excretion from the contralateral kidney were not significantly altered. In animals given meclofenamate (2 mg/kg·hr), renal PGE2 excretion was reduced to 22.3 ± 5.1 pg/min prior to micropuncture and it remained low at 8.9 ± 1.8pg/min after papillary micropuncture. Meclofenamate also blocked the fall in urine osmolality caused by micropuncture of the renal papilla, with urine osmolality averaging 1940 ± 122 before and 1782 ± 96 mosmol/kg·H2O after the micropuncture. These results indicated that papillary micropuncture through an intact ureter increased renal PGE2 excretion and that a rise in renal production of PGE2 or some other prostanoid is associated with a fall in urine concentrating ability.  相似文献   

4.
The effect of suppression of prostaglandin synthesis on renal sodium handling and microsomal Na---K ATPase was studied in control and indomethacin treated intact rats maintained on a normal sodium diet (series A) and chronically salt loaded (series B). Indomethacin administration resulted in a decreased GFR and a significantly depressed urinary excretion and an increased fractional reabsorption of sodium in animals fed the normal sodium diet or chronically salt loaded. In rats maintained on a nomral Na diet, the activity of the renal medullary Na---K ATPase after indomethacin was 206.3±6.4 ug Pi./mg protein, i.e. significantly higher as compared with the enzyme activity in the medullary renal fraction from control animals in which it averaged 148±7.79 ug Pi/mg protein (p<0.001). While after chronic salt load a similar increment in the activity of renal medullary Na---K ATPase was observed, no additional stimulation was elicited by subsequent indomethacin administration. The addition of exogenous PGE2, mM to microsomal fractions obtained from kidneys of normal rats, was associated with a moderate suppression of the medullary Na---K---ATPase activity, from a basal level of 170±16 to 151.3±13 umol Pi/mg protein/hr (p<0.005. In isolated segments of medullary thick ascending limb of Henle's loop (MTAL) addition of PGE2 to the incubation medium resulted in a significant inhibition of Na---K--- ATPase from 37.2±2 to 21.25 ± 1.17 × 10−11 mol/mm/min (p<0.0001.These findings suggest that the increased renal Na reabsorption after inhibition of PG synthesis might be related, at least partly, to stimulation of medullary Na---K ATPase. In parallel, the reported natriuretic effect of prostaglandins might imply a direct inhibitory effect of these mediators on renal Na---K ATPase.  相似文献   

5.
Simultaneous determination of urinary excretion rates of primary unmetabolized prostanoids and their enzymatic metabolites were performed by gas chromatography-mass spectrometry (GC/MS) or tandem mass spectrometry (GC/MS/MS). Changes in kidney function were induced by acute (4 h) volume expansion. Despite marked changes in urine flow, GFR, urinary pH, osmolality, sodium and potassium excretion, only a insignificant or transient rise in the enzymatic prostanoid metabolites (2,3-dinor-6-keto-PGF, PGE-M, 2,3-dinor-TxB2 and 11-dehydro-TxB2) was observed. The excretion rates of the primary prostanoids were elevated in parallel with the rise in urine flow: PGE2 rose (p < 0.05) from 14.2 ± 4.0 to 86.2 ± 20.7, PGF2α from 60.0 ± 4.9 to 119.8 ± 24.0, 6-keto-PGF from 7.2 ± 1.3 to 51.5 ± 17.0, and txB2 from 11.2 ± 3.3 to 13.6 ± 3.6 ng/h/1.73 m2 ( ) at the maximal urine flow. Except for 6-keto-PGF and TxB2, this rise in urinary prostanoid levels was only transient despite a sustained fourfold elevated urine flow. We conclude that urine flow rate acutely affect urine prostanoid excretion rates, however, over a prolonged peroid of time these effects are not maintained. The present data support the concept that urinary levels of primary prostanoids mainly reflect renal concentrations whereas those of enzymatic metabolites reflect systemic prostanoid activity. From the excretion pattern of TxB2 one can assume that this prostanoid represents renal as well as systemic TxA2 activity.  相似文献   

6.
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF) were determined. PGE2 and 6 keto PGF were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196±40 to 370±84 ng/4 hrs/g creatinine and 6 keto PGF1α(184±30 to 326±36), both p<0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF release (370±84 vs. 381±80) PGE2 and (326±50 vs. 315±40) 6 keto PGF, both p>0.2). PHT alone stimulated only 6 keto PGF. PHB and the specific α1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with α1 characteristics.  相似文献   

7.
In order to verify the validity of the assumption that male urinary Prostaglandin (PG) E2 reflects its renal production, PGE2 and PGF concentrations were measured by radioimmunoassay in the renal venous plasma (RVP) and urine (U) of 12 male and 4 female healthy volunteers. While women had a similar PGE2/PGF ratio in RVP (0.59 ± 0.18) and U (0.41 ± 0.06), men had a significantly (p< 0.05) higher ratio in U (1.43 ± 1.72) as compared to RVP (0.54 ± 0.16). This was largely due to considerably higher and more variable U-PGE2 concentrations (roughly 6 times higher than female values), despite almost identical RVP levels. The possibility of an increased U excretion of a cross-reacting member of the PG-system, as a cuase of such apparently high PGE2-like immunoreactivity (LI), was ruled out by TLC characterization of PGE2-LI with three different anti-PGE2 sera. Thus, male U-PGE2 may variably reflect an extra-renal source, such as contamination with trace amounts of seminal fluid. It is concluded that, unless such a contamination can be monitored and corrected for, measurement of male U-PGE2 should be considered of questionable relevance to renal PG-synthesis.  相似文献   

8.
Thw radioimmunological (RIA) determination of prostaglandin (PG) E2 and of PGF in urine humans and rats is described in detail. After extraction and chromatography PGE2 was determined by using a PGE specific antibody or by using either PGB or PGF specific antibodies after the respective conversion procedures. The three different RIA procedures were compared to each other. PGF was determined by a specific antibody to PGF. Basal excretion of PGE2 and of PGF in healthy women on free diet was 9.3 ng/hour ± 0.96 and 18.3 ng/hour ± 2.5 respectively. Furosemide increased the excretion of PGE2 and of PGF in humans significantly, while PG-excretion rates decreased on indomethacin. In rat urine PGE2 and PGE increased markedly from 46.2 pg/min ± 9.3 and 27 ± 3.4 to 253.8 ± 43.3 and 108 ± 12.6 pg/min (per one kidney) in the anesthetized-laparotomized animal. This increase was abolished after giving two different PG synthetase inhibitors.  相似文献   

9.
In view of the likely production of monohydroxyeicosatetraenoic acid (HETE's) in bronchial asthma, the role of these lipoxygenase products in the development of a classical clinical element of airway disease, namely airway hyperreactivity, has been investigated. Tracheas removed from guinea-pigs actively sensitized to ovalbumin produced, upon antigenic challenge (0.01 μg/ml), a 17-fold increase (0.97 ± 0.34 ng/ml to 16.73 ± 1.58 ng/ml) in the amount of 5-hydroxyeicosatetraenoic acid (5-HETE) as measured by radioimmunoassay of the tissue-bath fluid, indicating that this tissue is capable of producing 5-HETE. While 5-HETE alone, at concentrations equal to or greater than those found during the above antigenic response (0.001 to 1.0 μM), failed to produce intrinsic contractions of normal, nonsensitized guinea-pig trachea, a 30 min pretreatment with 5-HETE (1.0 μM) enhanced subsequent LTD4-induced contractions. Pretreatment with either 12- or 15-HETE, at similar concentrations and conditions, failed to potentiate LTD4 concentration-response curves. The effect of 5-HETE was time-dependent, since pretreatment for either 15 or 60 min had little or no effect on subsequent LTD4 responses. Also, the 5-HETE-induced enhancement seemed specific fot LTD4, since contractions to LTC4 (in the presence of l-serine borate), acetylcholine, histamine, PGD2 or U-46619 were unaffected by 5-HETE. Therefore, 5-HETE may have a role in the development of airway hyperreactivity by interacting with released LTD4 to exacerbate airway smooth muscle contraction in asthma.  相似文献   

10.
PGI2 and 6-keto-PGF were converted to 6-methoxime-PGF (6-MeON-PGF) by treatment with methoxyamine HCl in acetate buffer. The formed 6-MeON-PGF was measured by radioimmunoassay. Antisera were raised in rabbits after immunization against 6-MeON-PGF-BSA conjugate. Diluted 1:20.000 to bind 50% of the tracer (3H-6-MeON-PGF, 100 Ci/mmol), the antiserum cross reacted 0.8% with PGE2, 1% with PGF and less than 0.2% with PGD2, PGF, PGF and TXB2. The radioimmunoassay was used to estimate release of PGI2 and 6-keto-PGF from chopped rabbit renal medulla and cortex incubated in Krebs-Ringer bicarbonate buffer (37°C, 30 min). The 6-keto-PGf radioimmunoassay was validated in biological samples by mass fragmentography. The chopped medulla (n=5) released 38±9 ng/g/min and the cortex (n=5) 4.7±2.0 ng/g/min, while the release of immunoreactive PGE2 (iPGE2) and iPGF was 171±26 and 74±13 ng/g/min from the medulla and 4.3±1.3 and 2.7±0.3 ng/g/min from the cortex, respectively. The results confirm previous findings, which indicate that in the renal medulla prostaglandin endoperoxides are mainly transformed to prostaglandins, while in the cortex transformation to PGI2 seems to be of greater importance.  相似文献   

11.
Antiserum against PGE2 was raised in rabbits following immunization with prostaglandin-hen-γ-globulin conjugate. The antiserum exhibited 14% cross reactivity with PGE1 and far less cross-reaction with heterologous prostaglandins. A microcolumn of Sephadex LH-20 was used for a partial, but sufficient separation of PGE2 from PGE1 and a complete separation from heterologous prostaglandins to ensure a specific RIA for PGE2. The precision of the method in the range 10–500 picograms showed a coefficient of variation varying between 4 and 13%. The detection limit was 10 picograms corresponding to 15 pg/ml of PGE2 in serum.In order to demonstrate the validity of the method values obtained for non-diuretic rat renal venous serum were compared with those obtained using the isotope derivative method of Bojesen & Buckhave (1972) on the same samples. The concentrations of PGE2 obtained were 239 ± 25 pg/ml and 250 ± 58 pg/ml, respectively.  相似文献   

12.
Twenty crossbred gilts with at least 2 consecutive estrous cycles of 18 to 21 days in length were used to study the effects of prostaglandins E2 and F2α (PGE2 and PGF2α) on luteal function in indomethacin (INDO) treated cycling gilts. Intrauterine and jugular vein catheters were surgically palced before day 7 of the treatment estrous cycle and gilts were randomly assigned to 1 of 5 treatment groups (4/groups). With exception of the controls (Group I) all gilts received 3.3 mg/kg INDO every 8 h, Groups III, IV and V received 2.5 mg PGF2; 2.5 mg PGF2α + 400 μg PGE2 every 4 hr, or 400μg PGE2 every 4 h, respectively. All treatments were initiated on day 7 and continued until estrus or day 23. Jugular blood for progesterone analysis was collected twice daily from day 7 to 30. Estradiol-17β (E2-17β) concentrations were dtermined in samples collected twice daily, from 2 d before until 2 d following the day of estrus onset. When compared to pretreatment values, estrous cycle length was unaffected (P>0.05) in Group I, prolonged (P<0.05) in Groups II, IV and V; and shortened (P<0.05) in Group III. The decline in plasma progesterone concentration that normally occurs around day 15 was unaffected (P>.05) in Group I; delayed (P<0.05) in Groups II, IV and V; and occurred early (P<0.05) in Group III. Mean E2-17β remained high (31.2 ± 4.9 to 49.3 ± 3.1 pg/ml) in Groups III and IV, while the mean concentrations in Groups III and V varied considerably (17.0 ± 2.0 to 52.2 ± 3.5 pg/ml). The results of this study have shown that PGE2 will counteract the effects of PGF2α in INDO treated cycling gilts. The inclusion of PGF2α appeared to either stimulate E2-17β secretion or maintain it at a higher level than other treatments.  相似文献   

13.
The urinary prostaglandin E2 excretion was measured daily for 28 days in 15 patients (10 men and 5 women) after renal allotransplantation. Patients with acute oliguric renal failure immediately after the transplantation showed high urinary PGE2 concentrations, but no or minimal increase in the total excretion rates. The median PGE2 excretion was 211 μg/24 h after establishment of stable renal function, but with great individual variations. Rejection crises were characterized by a two-fold increase in PGE2 excretion, with a subsequent fall induced by the steroid treatment. The PGE2 excretion correlated better with urinary sodium excretion than diuresis.The pathophysiological role of the renal prostaglandin ssynthesis remains incompletely defined. The prostaglandin E2 (PGE2) appears to act as a modulator of the renal salt and water excretion (1,2) and prostaglandins are important mediators of the immunresponses (3,4). The eraly renal allograft rejection is an event characterized by salt and water retention together with decreasing renal function (5). Antibodies against renal tissue as well as cytotoxic leukocytes (“killer cells”) are active in the process (6,7) and many hormonal systems are involved, among them renin and vasopressin (8). Both hormones are known to stimulate the synthesis of prostaglandin in the kidneys and interact with its effect (9,10,11). The present material was therefore designed to study the urinary excretion of PGE2 in the kidney allografts before and during rejection crises.  相似文献   

14.
The 100,000 xg supernatant of rabbit kidney contains a prostaglandin-E2-9-ketoreductase which has an obligatory requirement for NADPH. This enzyme is localised in the renal cortex and is able to quantitatively convert PGE2 to PGF. A broad pH profile was evident with an optimum at pH 7·5. Kinetic studies indicated a Km of 3·2 × 10−4M PGE2. The isoelectric point was at pH 5·65 and the molecular weight, as estimated by gel filtration, was 21,800. These values differ from those obtained with enzyme from monkey brain tissue and suggest a tissue specificity of PGE2-9-ketoreductase. By combining isoelectric focussing techniques with sephadex filtration considerable purification of the renal enzyme was achieved.  相似文献   

15.
The metabolism of leukotriene (LT)C4 and its major routes of elimination have been studied in four anesthetized domestic pigs administered intravenous [3H]-LTC4 (0.5 μCi/kg). The kinetic profile of LTC4 in the blood was followed for 60 min after administration while the biliary and urinary excretion of LTC4 and its metabolites were determined over a 120 min interval. The total recovery of radioactivity in bile and urine was 45% ± 1 (n = 3) and 18% (n = 2) respectively. Examination of the radioactive metabolites in bile showed LTD4 (44% of biliary content) and LTE4 (21% of biliary content) as the major identified lipoxygenase products at t (27 min). The only identified cysteinyl leukotriene observed in the urine was LTE4 (13% of urinary content). In both bile and urine substantial amount of radioactivity were detected at the solvent front of the reverse phase chromatographic system indicating the presence of additional unidentified metabolites. We suggest that measurement of metabolites using these sampling methods may be useful for the detection and measurement of peptide leukotriene production .  相似文献   

16.
Hypoxia alters vascular tone which regulates regional blood flow in the pulmonary circulation. Endothelial derived eicosanoids alter vascular tone and blood flow and have been implicated as modulators of hypoxic pulmonary vasoconstriction. Eicosanoid production was measured in cultured bovine pulmonary endothelial cells during constant flow and pressure perfusion at two oxygen tensions (hypoxia: 4% O2, 5% CO2, 91% N2; normoxia: 21% O2, 5% CO2, 74% N2). Endothelial cells were grown to confluence on microcarrier beads. Cell cartridges (N=8) containing 2 ml of microcarrier beads ( 5 × 106 cells) were constantly perfused (3 ml/min) with Krebs' solutions (pH 7.4, T 37°C) equilibrated with each gas mixture. After a ten minute equilibration period, lipids were extracted (C18 Sep Pak®) from twenty minute aliquots of perfusate over three hours (nine aliquots per cartridge). Eicosanoids (6-keto PGF1α; TXB2; and total leukotriene [LT - LTC4, LTD4, LTE4, LTF4]) were assayed by radioimmunoassay. Eicosanoid production did not vary over time. 6-keto PGF1α production was increased during hypoxia (normoxia 291 ± 27 vs hypoxia 395 ± 35 ng/min/gm protein; p < 0.01). Thromboxane production (normoxia 19 ± 2 vs hypoxia 20 ± 2 ng/min/gm protein) and total leukotriene production (normoxia 363 ± 35 vs hypoxia 329 ± 29 ng/min/gm protein) did not change with hypoxia. These data demonstrated that oxygen increased endothelial prostacyclin production but did not effect thromboxane or leukotriene production.  相似文献   

17.
To examine further the possible prostanoid involvement in the influence of the epithelium on guinea-pig tracheal smooth muscle responsiveness, we have analyzed the effects of LTD4, methacholine and histamine on the level of airway smooth muscle tone and on the amounts of PGE and PGI2 (determined by radioimmunoassay) in the presence and absence of the epithelium. Removal of the epithelium increased the sensitivity of guinea-pig trachea to the contractile effects of LTD4, methacholine and histamine. LTD4 (3–100 nM), methacoline (0.1–10 μM) or histamine (0.3–30 μM) did not increase prostanoid release above control values in either the presence or absence of the epithelium. The unstimulated release of PGE2 and PGF but not PGI2, was decreased in tissues lacking epithelium. Indomethacin (1 μM) reduced the baseline tone to a smaller extent in the absence of epithelium. In the presence but not the absence of the epithelium, indomethacin increased the sensitivity of preparations to the contractile effect of methacholine. The results support the postulate of an epithelium-derived inhibitory factor modulating guinea-pig tracheal smooth muscle responsiveness. The identity of this factor is not known but is not PGI2 and is unlikely to be PGF or PGE2. However, the possibility remains that the basal release of PGE2 and/or PGF derived from the epithelium may markedly affect the responsiveness of guinea-pig tracheal smooth muscle. Furthermore, the epithelium is a significant source of PGE2 and PGF which may be involved in the maintenance of baseline tone.  相似文献   

18.
The sensitivity of sheep myometrial tissue to prostaglandin F (PGF), PGE2, the thromboxane analog U-44069, and leukotrienes C4 (LTC4) and LTD4 was investigated in a superfusion system. Tissues were obtained from eight oophorectomized ewes, with or without pretreatment with estradiol-17β. After equilibration, spontaneous activity was abolished by adding indomethacin to the superfusion fluid. The dose needed to induce a contraction with a peak level of 50% of the median peak level of spontaneous contractions increased from PGE2 to PGF, U-44069, LTC4, and LTD4. The differences between the doses required were significant for all compounds, except between LTC4 and LTD4. Estradiol-17β pretreatment caused an increase in the required dose of PGF. The results of this study do not support the hypothesis that leukotrienes are involved in the regulation of myometrial activity.  相似文献   

19.
The effects of the three prostaglandins A1, E2, and F on renal blood flow, glomerular filtration rate (GFR), fluid excretion, and urinary output of Na, K, Ca, Cl, and solutes were evaluated at a dose range of 0.01 – 10 μg/min. The prostaglandins were infused into the renal artery of dogs. GFR was not significantly altered by the PGs. PGA1 increased renal blood flow by approximately of the control at 0.01 μg/min without dose dependence at higher infusion rates. It had only little effects which were not dose dependent on fluid and electrolyte output. The effects of PGE2 on renal blood flow, fluid, sodium, and chloride excretion were dose dependent with a steep slope of the dose response curve between 0.1 and 1.0 μg/min. Blood flow was increased maximally by 80 %, urine volume by more than 400 %. PGF had no effect on renal blood flow, whereas urinary output was increased to approximately the same maximal level as by E2 although ten times higher doses were needed. Potassium excretion was less influenced than the excretion of Na and Cl and osmolar clearance was less increased than urine volume by all three prostaglandins.It is concluded that if a PG is involved in the regulation of the renal fluid or electrolyte excretion it is likely to be of the PGE-type. A PGA could only be involved in regulation of renal hemodynamics, whereas PGF although effective in the kidney exerts its effects at doses too high to have physiological significance.  相似文献   

20.
It has been speculated that hypoxia might cause vasodilation of the ductus arteriosus by enhancing the relaxing action of endogenous prostaglandins. Using isolated rings of lamb ductus arteriosus, we measured immunoreactive PGE2 released into the bath solution. We found that after a period of stabilization following suspension of the rings in low PO2, only a negligible amount of PGE2 was released by the rings (1.15 ± 0.52 pg PGE2/mg wet weight per 45 min, n14, ±SEM). When rings were exposed to a high PO2, significant amounts of PGE2 were released (32.3 ± 12.6 pg PGE2/mg wet weight per 45 min). These observations were supported by our findings that indomethacin had a negligible contractile effect (0.11 ± 0.09 g/mm2, n=11) on rings equilibrated in a low PO2, but caused a significant contraction (0.55 ± 0.12 g/mm2, n=11) in rings incubated in a high PO2. These findings do not support the hypothesis that low PO2 increases PGE2 production by the lamb ductus arteriosus. They are consistent with the hypothesis that endogenous PGE2 inhibits the ability of the vessel to contract in response to oxygen. In addition (if these results can be extrapolated to the situation), the demonstration that the ductus arteriosus needs an oxygen tension greater than that present to produce effective amounts of PGE2, strengthens the hypothesis that circulating levels of PGE2 may be important in the prenatal maintenance of ductal patency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号