首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins.  相似文献   

2.
Prajapati RS  Indu S  Varadarajan R 《Biochemistry》2007,46(36):10339-10352
Molten globule-like intermediates have been shown to occur during protein folding and are thought to be involved in protein translocation and membrane insertion. However, the determinants of molten globule stability and the extent of specific packing in molten globules is currently unclear. Using far- and near-UV CD and intrinsic and ANS fluorescence, we show that four periplasmic binding proteins (LBP, LIVBP, MBP, and RBP) form molten globules at acidic pH values ranging from 3.0 to 3.4. Only two of these (LBP and LIVBP) have similar sequences, but all four proteins adopt similar three-dimensional structures. We found that each of the four molten globules binds to its corresponding ligand without conversion to the native state. Ligand binding affinity measured by isothermal titration calorimetry for the molten globule state of LIVBP was found to be comparable to that of the corresponding native state, whereas for LBP, MBP, and RBP, the molten globules bound ligand with approximately 5-30-fold lower affinity than the corresponding native states. All four molten globule states exhibited cooperative thermal unfolding assayed by DSC. Estimated values of DeltaCp of unfolding show that these molten globule states contain 28-67% of buried surface area relative to the native states. The data suggest that molten globules of these periplasmic binding proteins retain a considerable degree of long range order. The ability of these sequentially unrelated proteins to form highly ordered molten globules may be related to their large size as well as an intrinsic property of periplasmic binding protein folds.  相似文献   

3.
2,2,2-Trifluoroethanol (TFE) denatures proteins but also stabilizes/induces alpha helical conformation in partially/completely unfolded proteins. As reported earlier from this laboratory, stem bromelain is known to exist as a partially folded intermediate (PFI) at pH 2.0. The effect of increasing concentration of TFE on the PFI of bromelain has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of the hydrophobic dye 1-anilino 8-naphthalene sulfonic acid (ANS), and near-UV CD temperature transition. Far-UV CD spectra show considerable accumulation of secondary structure at 70% (v/v) concentration of TFE with spectral features resembling the pH 7.0 preparation. Interestingly the partially folded intermediate regained significant tertiary structure/interactions, with increasing concentration of TFE, and at 60% (v/v) TFE approached almost that of the pseudo native (pH 7.0) state. Further increase to 70% (v/v) TFE, however, resulted in complete loss of tertiary structure/interactions. Studies on tryptophan fluorescence also suggested the induction of some compact structure at 60% (v/v) concentration of TFE. The partially folded intermediate showed enhanced binding of the fluorescent probe (ANS) in the presence of 60% (v/v) TFE. Taken together these observations suggest a "molten globule" state between 60 and 70% (v/v) TFE. Thermal transition studies in the near-UV CD region indicated cooperative transition for PFI in the presence of 60% (v/v) TFE changing to noncooperative transition at 70% (v/v) TFE. This was accompanied by a shift in the midpoint of thermal denaturation (T(m)) from 58 to 51 degrees C. Gradual transition and loss of cooperative thermal unfolding in the 60-70% (v/v) range of TFE also support the existence of the molten globule state.  相似文献   

4.
Addition of 8-anilino-1-naphthalenesulfonate (ANS) to acid-denatured pectate lyase C (pelC) leads to a large increase in the fluorescence quantum yield near 480 nm. The conventional interpretation of such an observation is that the ANS is binding to a partially folded intermediate such as a molten globule. Far-ultraviolet circular dichroism demonstrates that the enhanced fluorescence results from the induction of a partially folded protein species that adopts a large fraction of native-like secondary structure on binding ANS. Thus, ANS does not act as a probe to detect a partially folded species, but induces such a species. Near-ultraviolet circular dichroism suggests that ANS is bound to the protein in a specific conformation. The mechanism of ANS binding and structure induction was probed. The interaction of acid-unfolded pelC with several ANS analogs was investigated. The results strongly indicate that the combined effects of hydrophobic and electrostatic interactions account for the relatively high binding affinity of ANS for acid-unfolded pelC. These results demonstrate the need for caution in interpreting enhancement of ANS fluorescence as evidence for the presence of molten globule or other partially folded protein intermediates.  相似文献   

5.
The molten globule state is a partially folded conformer of proteins that has been the focus of intense study for more than two decades. This non-native fluctuating conformation has been linked to protein-folding intermediates, to biological function, and more recently to precursors in amyloid fibril formation. The molten globule state of human serum retinol-binding protein (RBP) has been postulated previously to be involved in the mechanism of ligand release (Ptitsyn, O. B., et al. (1993) FEBS Lett. 317, 181-184). Conserved residues within RBP have been identified and proposed to be key to folding and stability, although a link to a molten globule state has not previously been shown (Greene, L. H., et al. (2003) FEBS Lett. 553, 39-44). In this work, a detailed characterization of the acid-induced molten globule of RBP is presented. Using stopped-flow fluorescence spectroscopy in the presence of 8-anilino-1-naphthalene sulfonic acid (ANS), we show that RBP populates a state with molten-globule-like characteristics early in refolding. To gain insight into the structural features of the molten globule of RBP, we have monitored the denaturant-induced unfolding of this ensemble using NMR spectroscopy. The transition at the level of individual residues is significantly more cooperative than that found previously for the archetypal molten globule, alpha-lactalbumin (alpha-LA); this difference may be due to a predominantly beta-sheet structure present in RBP in contrast to the alpha-helical nature of the alpha-LA molten globule.  相似文献   

6.
Hydrophobic interaction of 8-anilino-1-naphthalene sulfonic acid (ANS) with proteins is one of the widely used methods for characterizing/detecting partially folded states of proteins. We have carried out a systematic investigation on the effect of ANS, a charged hydrophobic fluorescent dye, on structural properties of acid-unfolded horse heart cytochrome c at pH 2.0 by a combination of optical methods and electrospray ionization mass spectroscopy (ESI MS). ANS was found to induce, a secondary structure similar to native protein and quenching of fluorescence of tryptophan residue, in the acid-unfolded protein. However, the tertiary structure was found to be disrupted thus indicating that ANS stabilizes a molten globule state in acid-unfolded protein. To understand the mechanism of ANS-induced folding of acid-unfolded cytochrome c, comparative ESI MS, soret absorption, and tryptophan fluorescence studies using nile red, a neutral hydrophobic dye, and ANS were carried out. These studies suggested that, at low pH, electrostatic interactions between negatively charged ANS molecules and positively charged amino acid residues present in acid-unfolded cytochrome c are probably responsible for ANS-induced folding of acid-unfolded protein to partially folded compact state or molten globule state. This is the first experimental demonstration of ANS induced folding of unfolded protein and puts to question the usefulness of ANS for characterization/determination of partially folded intermediates of proteins observed under low pH conditions.  相似文献   

7.
Ceru S  Zerovnik E 《FEBS letters》2008,582(2):203-209
We report that a mutant of human stefin B is in a molten globule conformation. It has all the spectroscopic characteristics for such a state. We also demonstrate that the molten globule is oligomeric, eluting on SEC within a similar MW range than the higher order oligomers of the wild type protein, which is confirmed by DLS and AFM. Both, the higher oligomers and the molten globule state bind ANS, implying a high degree of hydrophobic patches exposure and partial opening of the structure. Finally, we demonstrate that the oligomeric molten globule is as toxic as the prefibrillar aggregates obtained at acid pH or the higher order oligomers prepared at neutral pH.  相似文献   

8.
Molten globules are partially folded states of proteins which are generally believed to mimic structures formed during the folding process. In order to determine the minimal requirements for the formation of a molten globule state, we have prepared a set of peptide models of the molten globule state of human alpha-lactalbumin (alphaLA). A peptide consisting of residues 1-38 crosslinked, via the native 28-111 disulfide bond, to a peptide corresponding to residues 95-120 forms a partially folded state at pH 2.8 which has all of the characteristics of the molten globule state of alphaLA as judged by near and far UV CD, fluorescence, ANS binding and urea denaturation experiments. The structure of the peptide construct is the same at pH 7.0. Deletion of residues 95-100 from the construct has little effect. Thus, less than half the sequence is required to form a molten globule. Further truncation corresponding to the selective deletion of the A (residues 1-19) or D (residues 101-110) helices or the C-terminal 310 helix (residues 112-120) leads to a significant loss of structure. The loss of structure which results from the deletion of any of these three regions is much greater than that which would be expected based upon the non-cooperative loss of local helical structure. Deletion of residues corresponding to the region of the D helix or C-terminal 310 helix region results in a peptide construct which is largely unfolded and contains no more helical structure than is expected from the sum of the helicity of the two reduced peptides. These experiments have defined the minimum core structure of the alphaLA molten globule state.  相似文献   

9.
Aspartate-induced aminoacylase folding and forming of molten globule   总被引:1,自引:0,他引:1  
Aspartate is an osmolyte found in some marine invertebrates and cyclostome fish. The aspartate-induced unfolding of N-acylamino acid amido hydrolase (aminoacylase) has been studied by measuring enzyme activity, fluorescence emission spectra, 8-anilino-1-naphthalenesulfonate (ANS) fluorescence spectra and far-UV circular dichroism (CD) spectra. The results showed that aspartate caused the inactivation and unfolding of aminoacylase. Surprisingly, increasing concentration of aspartate showed the "acid-induced folding", which used to be seen only in strong acids or salts at much lower pH. Although aspartate has the pI of 2.77 that is the lowest among all the free amino acids, it is actually a weak acid. It is thus of great interest why it causes this phenomenon to happen. The relative change of intrinsic fluorescence and ANS binding spectra have shown that there existed a stable molten globule state of aminoacylase with slightly disrupted tertiary structure and more hydrophobic surface. The molten globule state indicates that intermediates existed during aminoacylase refolding process. Unlike the other acids, such as trichloroacetic acid, there is no precipitation observed as the aspartate concentrations increased. It suggests the aspartate anions have an osmotic effect for the molten globule formed during unfolding process. Binding of aspartate anion to the protonated protein, which minimizes the intramolecular repulsion, might explain the osmotic effect of this amino acid in the nature. The results also showed the Apo-aminoacylase followed similar rules as Holo-enzyme, which suggested the zinc ion may play more important roles on activity other than structure.  相似文献   

10.
pH and chemical denaturant dependent conformational changes of a serine protease cryptolepain from Cryptolepis buchanani are presented in this paper. Activity measurements, near UV, far UV CD, fluorescence emission spectroscopy, and ANS binding studies have been carried out to understand the folding mechanism of the protein in the presence of denaturants. pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins due to their ability to influence the electrostatic interactions. The preliminary biophysical study on cryptolepain shows that major elements of secondary structure are beta-sheets. Under neutral conditions the enzyme was stable in urea while GuHCl-induced equilibrium unfolding was cooperative. Cryptolepain shows little ANS binding even under neutral conditions due to more hydrophobicity of beta-sheets. Multiple intermediates were populated during the pH-induced unfolding of cryptolepain. Temperature-induced denaturation of cryptolepain in the molten globule like state is non-cooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts, possibly domains, in the molecular structure of cryptolepain, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of A state (molten globule state) of cryptolepain is unique, as lower concentration of denaturant, not only induces structure but also facilitate transition from one molten globule like state (MG(1)) into another (MG(2)). The increase of pH drives the protein into alkaline denatured state characterized by the absence of any ANS binding. GuHCl- and urea-induced unfolding transition curves at pH 12.0 were non-coincidental indicating the presence of an intermediate in the unfolding pathway.  相似文献   

11.
A mixture of 4-chloro-1-butanol and 2,2,2-Trifluoroethanol (TFE) has been used to generate Molten globule (MG) state of structurally homologous but functionally different proteins bovine α-lactalbumin and hen egg-white lysozyme. The thermal denaturation was done using UV–Visible spectroscopy. From UV–Visible profile, thermal transition was not observed beyond a particular concentration. There was an indication of molten globule state in case of α-lactalbumin from circular dichroism experiments. By intrinsic tryptophan fluorescence, acrylamide and potassium iodide quenching, 8-anilino-naphthalene sulfonic acid (ANS) binding and energy transfer studies the presence of molten globule state was confirmed. Quantitative characterization of MG state and determining the binding thermodynamics of ANS to the MG state was done using Isothermal Titration Calorimetry (ITC). Results show that α-lactalbumin exists in MG state at a particular concentration but lysozyme does not show features of MG state.  相似文献   

12.
Dev S  Khan RH  Surolia A 《IUBMB life》2006,58(8):473-479
Peanut Agglutinin (PNA) is a legume lectin with a unique open quarternary structure. It is a homotetrameric protein, the monomeric subunit of which is made up of 3 beta sheets. The structural change in this protein has been induced by 2,2,2-trifluoroethanol (TFE) at two different pH. At neutral pH, PNA exists as a homotetramer, while at pH 2.5, it is known to dissociate to a dimer. The effect of TFE has been studied at both the pH by intrinsic tryptophan fluorescence, far and near UV Circular Dichroism, ANS binding and dynamic light scattering. At low pH, 15% TFE is found to induce a molten globule like state that shows maximum ANS binding. Increasing concentration of TFE increases alpha helical content and the compactness of the protein. The compact PNA at higher concentration of TFE is structurally different from the native structure. The effect of TFE at neutral pH on PNA is somewhat different from that observed at low pH. TFE does not induce molten globule like state at this pH. The detailed study of the structural change of PNA by TFE has been presented.  相似文献   

13.
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274-329 K. At 298 K, values of deltaGdegrees , deltaCp, and Cm were 3.1+/-0.2 kcal mol(-1), 5.9+/-0.8 kcal mol(-1) K(-1) (15.9 cal (mol-residue)(-1) K(-1)), and 0.8 M, respectively, at pH 3.0 and 14.5+/-0.4 kcal mol(-1), 8.3+/-0.7 kcal mol(-1) K(-1) (22.4 kcal (mol-residue)(-1) K(-1)), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of deltaGdegrees and deltaCp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of deltaCp per mol-residue for the molten globule is comparable to corresponding values of deltaCp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of deltaCp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.  相似文献   

14.
Fatima S  Ahmad B  Khan RH 《IUBMB life》2007,59(3):179-186
Studies on the acid-induced denaturation of Mucor miehei lipase (E.C. 3.1.1.3) were performed by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy and binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS). Acid denaturation of the lipase showed loss of secondary structure and alterations in the tertiary structure in the pH range 4 to 2 and 7 to 2 respectively, suggesting that the lipase exists as an acid-unfolded state approximately pH 2.0. A further decrease in pH (from 2.0 to 1.0) resulted in a second transition, which corresponded to the formation of both secondary and tertiary structures. The acid unfolded state at around pH 2.0 has been characterized by significant loss of secondary structure and a small increase in fluorescence intensity with a blue shift of 2 nm, indicating shift of tryptophan residues to less polar environment. Interestingly, the lipase at pH 1.0 exhibits characteristics of molten globule, such as enhanced binding of hydrophobic dye (ANS), native-like secondary structure and slightly altered tryptophanyl environments. That the molten globule of the lipase at pH 1.0 also possesses native-like tertiary structure is an interesting observation made for this lipase.  相似文献   

15.
Interaction with 8-anilino-1-naphthalenesulfonate (ANS) is widely used to detect molten globule states of proteins. We have found that even with stable partially folded states, the development of the fluorescence enhancements resulting from such interactions can be relatively slow and kinetically complex. This is probably because initial binding of the dye can induce subsequent changes in the protein structure, so that the ultimate resulting fluorescence enhancement is not necessarily a good, nonperturbing probe of the preexisting state of the protein. When ANS is used to study folding mechanisms the problem is compounded by the difficulty of distinguishing effects due to the development of dye interactions from those due to the changing populations of folding intermediates. Many of these complications can be avoided by experiments where the ANS is introduced only after folding has been allowed to proceed for a variable time. The initial fluorescence intensity after mixing, resulting only from rapid and therefore hopefully relatively nonperturbing interactions with the protein, can be monitored at different refolding times to provide a better reflection of the progress of the reaction, uncomplicated by dye interaction effects. Such studies of the folding of carbonic anhydrase and alpha-lactalbumin have been compared with conventional single-mix experiments and large discrepancies observed. When ANS was present throughout refolding, time-dependent changes attributed to the formation or reorganization of protein-ANS complexes were clearly superimposed on those associated with the actual progress of refolding, and the folding kinetics and population of intermediates were also substantially perturbed by the dye. Thus, it is clear that the pulse method, though cumbersome, should be used where refolding reactions are to be probed by dye binding. The results emphasize that fluorescence enhancement tends to be greatest in early intermediates, in contrast to what, for carbonic anhydrase at least, might appear to be the case from the more conventional experiments. Later intermediates in the folding of both of these proteins actually induce little fluorescence enhancement and therefore may be quite different in nature from equilibrium molten globule states.  相似文献   

16.
Affibodies are a novel class of binding proteins selected from phagemid libraries of the Z domain from staphylococcal protein A. The Z(SPA-1) affibody was selected as a binder to protein A, and it binds the parental Z domain with micromolar affinity. In earlier work we determined the structure of the Z:Z(SPA-1) complex and noted that Z(SPA-1) in the free state exhibits several properties characteristic of a molten globule. Here we present a more detailed biophysical investigation of Z(SPA-1) and four Z(SPA-1) mutants with the objective to understand these properties. The characterization includes thermal and chemical denaturation profiles, ANS binding assays, size exclusion chromatography, isothermal titration calorimetry, and an investigation of structure and dynamics by NMR. The NMR characterization of Z(SPA-1) was facilitated by the finding that trimethylamine N-oxide (TMAO) stabilizes the molten globule conformation in favor of the fully unfolded state. All data taken together lead us to conclude the following: (1) The topology of the molten globule conformation of free Z(SPA-1) is similar to that of the fully folded structure in the Z-bound state; (2) the extensive mutations in helices 1 and 2 destabilize these without affecting the intrinsic stability of helix 3; (3) stabilization and reduced aggregation can be achieved by replacing mutated residues in Z(SPA-1) with the corresponding wild-type Z residues. This stabilization is better correlated to changes in helix propensity than to an expected increase in polar versus nonpolar surface area of the fully folded state.  相似文献   

17.
The TTSS encoding ??translocator operon?? of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an ??-helical model for PopB, PcrH and PopB?CPcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB?CPcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (Kd?~?0.37???M) of PopB for PcrH at pH 7.8, which reduces to ~0.68???M at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.  相似文献   

18.
Equilibrium unfolding of A. niger RNase with chemical denaturants, for example GuHCl and urea, and thermal unfolding have been studied as a function of pH using fluorescence, far-UV, near-UV, and absorbance spectroscopy. Because of their ability to affect electrostatic interactions, pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins. ANS binding studies have been conducted to enable understanding of the folding mechanism of the protein in the presence of the denaturants. Spectroscopic studies by absorbance, fluorescence, and circular dichroism and use of K2D software revealed that the enzyme has α + β type secondary structure with approximately 29% α-helix, 24% β-sheet, and 47% random coil. Under neutral conditions the enzyme is stable in urea whereas GuHCl-induced equilibrium unfolding was cooperative. A. niger RNase has little ANS binding even under neutral conditions. Multiple intermediates were populated during the pH-induced unfolding of A. niger RNase. Urea and temperature-induced unfolding of A. niger RNase into the molten globule-like state is non-cooperative, in contrast to the cooperativity seen with the native protein, suggesting the presence of two parts/domains, in the molecular structure of A. niger RNase, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of the A state (molten globule state) of A. niger RNase is unique, because a low concentration of denaturant not only induces structural change but also facilitates transition from one molten globule like state (AMG1) into another (IMG2).  相似文献   

19.
Prothymosin alpha has previously been shown to be unfolded at neutral pH, thus belonging to a growing family of "natively unfolded" proteins. The structural properties and conformational stability of recombinant human prothymosin alpha were characterized at neutral and acidic pH by gel filtration, SAXS, circular dichroism, ANS fluorescence, (1)H NMR, and resistance to urea-induced unfolding. Interestingly, prothymosin alpha underwent a cooperative transition from the unfolded state into a partially folded conformation on lowering the pH. This conformation of prothymosin alpha is a compact denatured state, with structural properties different from those of the molten globule. The formation of alpha-helical structure by the glutamic acid-rich elements of the protein accompanied by the partial hydrophobic collapse is expected at lower pH due to the neutralization of the negatively charged residues. It is possible that such conformational changes may be associated with the protein function.  相似文献   

20.
Most proteins encoded by the nuclear genome are synthesized in the cytoplasm and fold into precise 3D structures. During synthesis, the nascent polypeptide begins to fold as it traverses the large subunit of the ribosome and is assisted by molecular chaperones in attaining its precise folded/highly ordered state efficiently and in a biologically relevant timescale. Proteins that are misfolded are culled, re-routed, and marked by mechanisms such as ubiquitinylation for degradation ensuring strict quality control (QC). In addition to the highly ordered "globular" proteins, emerging evidence indicates that a large fraction of the proteome also comprises the so-called "Intrinsically Disordered Proteins" (IDPs). IDPs are proteins that lack rigid 3D structures and instead, exist as dynamic ensembles. The dynamic structures in the IDPs have many similarities with "normal" globular proteins such as the native (ordered), and non-native (molten globule, pre-molten globule, and coil-like) states seen during folding of "normal" globular proteins. However, unlike the case of the nascent globular proteins, IDPs evade being detected as "misfolded" and degraded by the cell's QC system. We refer to this paradox as the order/disorder paradox and postulate that the IDPs capitalize on their intrinsic promiscuity and ability to undergo disorder-to-order transitions upon binding to biological targets (coupled folding and binding) to escape the cell's surveillance machinery. Understanding the mechanism by which the IDPs evade the quality check has wide implications from protein folding to disease biology since the aggregation of misfolded proteins underlies several debilitating illnesses such as many neurodegenerative diseases and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号