首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stress-strain relationship is determined by the inherent mechanical properties of the intestinal wall, the geometric configurations, the loading conditions and the zero-stress state of the segment. The purpose of this project was to provide morphometric and biomechanical data for rat duodenum, jejunum and ileum. The circumferential strains were referenced to the zero-stress state. Large morphometric variations were found along the small intestine with an increase in the outer circumferential length and luminal area and a decrease in wall thickness in distal direction. The serosal residual strain was tensile and decreased in distal direction (P < 0.05). The mucosal residual strain was compressive and the absolute value decreased in distal direction (P < 0.001). The stress-strain experiments showed that the duodenum was stiffest. All segments were stiffest in longitudinal direction (P < 0.05). In conclusion, axial variation in morphometric and biomechanical properties was found in the small intestine. The zero-stress state must be considered in future biomechanical studies in the gastrointestinal tract.  相似文献   

2.
Intestinal stress-strain distributions are important determinants of intestinal function and are determined by the mechanical properties of the intestinal wall, the physiological loading conditions and the zero-stress state of the intestine. In this study the distribution of morphometric measures, residual circumferential strains and stress-strain relationships along the rat large intestine were determined in vitro. Segments from four parts of the large intestine were excised, closed at both ends, and inflated with pressures up to 2kPa. The outer diameter and length were measured. The zero-stress state was obtained by cutting rings of large intestine radially. The geometric configuration at the zero-stress state is of fundamental importance because it is the basic state with respect to which the physical stresses and strains are defined. The outer and inner circumferences, wall thickness and opening angle were measured from digitised images. Subsequently, residual strain and stress-strain distributions were calculated. The wall thickness and wall thickness-to-circumference ratio increased in the distal direction. The opening angle varied between approximately 40 and approximately 125 degrees with the highest values in the beginning of proximal colon (F=1.739, P<0.05). The residual strain at the inner surface was negative indicating that the mucosa-submucosal layers of the large intestine in no-load state are in compression. The four segments showed stress-strain distributions that were exponential. All segments were stiffer in longitudinal direction than in the circumferential direction (P<0.05). The transverse colon seemed stiffest both in the circumferential and longitudinal directions. In conclusion, significant variations were found in morphometric and biomechanical properties along the large intestine. The circumferential residual strains and passive elastic properties must be taken into account in studies of physiological problems in which the stress and strain are important, e.g. large intestinal bolus transport function.  相似文献   

3.
Previous studies have demonstrated morphological and biomechanical remodeling in the intestine proximal to an obstruction. The present study aimed to obtain stress and strain thresholds to initiate contraction and the maximal contraction stress and strain in partially obstructed guinea pig jejunal segments. Partial obstruction and sham operations were surgically created in mid-jejunum of male guinea pigs. The animals survived 2, 4, 7 and 14 days. Animals not being operated on served as normal controls. The segments were used for no-load state, zero-stress state and distension analyses. The segment was inflated to 10 cmH(2)O pressure in an organ bath containing 37°C Krebs solution and the outer diameter change was monitored. The stress and strain at the contraction threshold and at maximum contraction were computed from the diameter, pressure and the zero-stress state data. Young's modulus was determined at the contraction threshold. The muscle layer thickness in obstructed intestinal segments increased up to 300%. Compared with sham-obstructed and normal groups, the contraction stress threshold, the maximum contraction stress and the Young's modulus at the contraction threshold increased whereas the strain threshold and maximum contraction strain decreased after 7 days obstruction (P<0.05 and 0.01). In conclusion, in the partially obstructed intestinal segments, a larger distension force was needed to evoke contraction likely due to tissue remodeling. Higher contraction stresses were produced and the contraction deformation (strain) became smaller.  相似文献   

4.
Patency rates of saphenous vein grafts following coronary artery bypass grafting (CABG) depend on multiple factors. Information regarding the impact of biomechanical properties of vein grafts on patency rates is not available. The objective of the present study was to evaluate whether uncontrolled manual pressure distension during routine preparation of the saphenous vein in CABG-induced changes in the biomechanical properties of the vein. The morphometric and stress-strain properties were studied in isolated segments of the saphenous vein from 12 patients undergoing elective CABG. Six segments were manually distended without pressure control and six were not distended. The mechanical test was performed as a ramp inflation using syringe pump. The vein dimensions were obtained from digitised images at different pressures as well as at the no-load and zero-stress states. The circumferences, the wall and lumen area, the wall thickness, and the outer diameter as function of the applied pressure were largest in the segments with uncontrolled manual distension compared to those without distension (P<0.05). The opening angle and the absolute value of the residual strains were lower (P<0.01) and the circumferential stress-strain curve shifted to the left, indicating the wall became stiffer with uncontrolled manual distension compared to those without distension (P<0.05). In conclusion, manual pressure distension changed the morphometric and biomechanical properties of the saphenous vein. The perspective is that studies on biomechanical properties on the saphenous vein may guide surgeons how to handle graft material without causing major changes of the biomechanical properties during harvesting and preparation.  相似文献   

5.
Data on morphological and biomechanical remodelling are needed to understand the mechanisms behind intestinal obstruction. The effect of partial obstruction on mechanical properties with reference to the zero-stress state and on the histomorphological properties of the guinea pig small intestine was determined in this study. Partial obstruction and sham operation were surgically created in mid-jejunum of guinea pigs. The animals survived 2, 4, 7, and 14 days. The age-matched guinea pigs that were not operated served as normal controls. The segment proximal to the obstruction site was used for histological analysis, no-load state and zero-stress state data, and distension test. The segment for distension was immersed in an organ bath and inflated to 10 cm H2O. The outer diameter change during the inflation was monitored using a microscope with CCD camera. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. The opening angle and absolute value of residual strain decreased (P<0.01 and P<0.001) whereas the wall thickness, wall cross-sectional area, and the wall stiffness increased after 7 days obstruction (P<0.05, P<0.01). Histologically, the muscle and submucosa layers, especially the circumferential muscle layer increased in thickness after obstruction. The opening angle and residual strain mainly depended on the thickness of the muscle layer whereas the wall stiffness mainly depended on the thickness of the submucosa layer. In conclusion, the histomorphological and biomechanical properties of small intestine (referenced for the first time to the zero-stress state) remodel proximal to the obstruction site in a time-dependent manner.  相似文献   

6.
Background and aimsPartial obstruction of the small intestine results in severe hypertrophy of smooth muscle cells, dilatation and functional denervation. Hypertrophy of the small intestine is associated with alteration of the wall structure and the mechanical properties. The aims of this study were to determine three dimensional material properties of the obstructed small intestine in guinea pigs and to obtain the 3D stress–strain distributions in the small intestinal wall.MethodsPartial obstruction of mid-jejunum was created surgically in five guinea pigs that were euthanized 2 weeks after the surgery. Ten-cm-long segments proximal to the obstruction site were used for the stretch-inflation mechanical test using a tri-axial test machine. The outer diameter, longitudinal force and the luminal pressure during the test were recorded simultaneously. An anisotropic exponential pseudo-strain energy density function was used as the constitutive equation to fit the experimental loading curve and for computation of the stress–strain distribution.ResultsThe wall thickness and the wall area increased significantly in the obstructed jejunum (P<0.001). The pressure—outer radius curves in the obstructed segments were translated to the left of the normal segments, indicating wall stiffening after the obstruction. The circumferential stress and the longitudinal stress through the wall were higher in the obstructed segments (P<0.02). This was independent of whether the zero-stress state or the no-load states were used as the reference state.ConclusionThe mechanical behaviour of the obstructed small intestine can be described using a 3D constitutive model. The obstruction-induced biomechanical properties change was characterized by higher circumferential and longitudinal stresses in the wall and altered material constants in the 3D constitutive model.  相似文献   

7.
Changes in small intestinal geometry, residual strain and stress-strain properties during physiological growth were studied in rats ranging from 1 to 32 weeks of age. Small intestinal mass and dimensions increased many-fold with age, e.g. the weight per unit length increased five-fold with age and the wall cross-sectional area increased four-fold. The opening angle of duodenum obtained at zero-stress state was approximately 220 degrees and 290 degrees during the first and second week after birth and decreased to 170 degrees at other ages (p < 0.005). The opening angle of ileum ranged between 120 degrees and 150 degrees . The residual strain of duodenum at the mucosal surface did not vary with age (p > 0.05) whereas the residual strain of ileum at the mucosal surface decreased with age (p < 0.001). The circumferential and longitudinal stress-strain curves fitted well to a mono-exponential function. At a given circumferential stress, the corresponding strain values increased during the first 8 weeks of age (p < 0.05) where after no further change was observed. Hence, the small intestine became more compliant during early life. At a given longitudinal stress, the corresponding strains of ileum and duodenum became larger during the first 2-4 weeks of age (p < 0.05) where after no further change was observed. The small intestine was stiffer in longitudinal direction compared to the circumferential direction. In conclusion, pronounced morphometric and biomechanical changes were observed in the rat small intestine during physiological growth. Such data may prove useful in the understanding of the functional changes of the digestive tract during early life.  相似文献   

8.
It is difficult to measure gastrointestinal smooth muscle (SM) tone except in sphincter regions. Since tone affects the biomechanical properties, the aim of the present study was to evaluate intestinal SM tone by studying the morphometry and biomechanical properties with and without muscle tone. Circumferential rings of 0.8-1mm in width were cut from the rat duodenum, jejunum and ileum. Sectors were obtained by cutting the rings opposite to the mesentery. The rings and the sectors were immersed in physiological Krebs solution in order to maintain the tone and into Krebs solution without Ca(++) and with EGTA to abolish the tone. The circumferences, area, the circularity and residual strain of the mucosal and serosal surfaces, opening angle, and opening angle tone/non-tone ratio were measured or computed. The tone affects the opening angle and residual strain in the intestinal sectors. The opening angle in the tissue sectors with tone was smaller (P<0.05) than those without tone in all three segments. The opening angle tone/non-tone ratio was 0.40+/-0.05, 0.43+/-0.06 and 0.36+/-0.11 for duodenum, jejunum and ileum, respectively, and did not differ among the three intestinal segments. The residual strain between sectors with and without SM tone differed in duodenal and jejunal mucosa and in the serosa of all three segments (P<0.05). The intestinal rings with tone showed axial variation for luminal area (P<0.001), for wall area (P<0.05), and for the mucosal and serosal residual strains (P<0.05). In conclusion, the intestinal mechanical properties are affected by intestinal SM tone. The tone can be evaluated by measuring the opening angle and residual strains of sectors in intestinal segments with and without SM tone.  相似文献   

9.
Morphometric and passive biomechanical properties were studied in isolated segments of the duodenum, jejunum and ileum in 22 EGF-treated rats and 12 control rats. The rats were allocated to groups with EGF treatment for 2, 4, 7, and 14 days (n = 6 for each EGF treatment group except n = 4 for the 14 days group) or saline treatment (n = 3 for each group). The intestinal segments were pressurized with Krebs solution from 0 to 8 cmH2O for duodenum and 0 to 6 cmH2O for jejunum and ileum using a ramp distension protocol. The diameter and length were recorded at different pressure levels. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter, pressure and the zero-stress state data. EGF treatment was associated with pronounced morphometric changes, e.g., the wall thickness, wall area, and the circumferential lengths significantly increased during EGF treatment in all intestinal segments (P < 0.05). Histological analysis showed that the thickness and area of the layers increased after EGF treatment. With respect to the biomechanical data, the opening angle increased in all segments during EGF treatment with the highest value in the 14 days EGF treatment group (P < 0.05). The same result was found for residual strain and the residual strain gradient through the intestinal wall. Linear regression analysis demonstrated that the opening angle mainly depended on the mucosa thickness and area. Furthermore, the circumferential stiffness increased in the duodenum and decreased in the jejunum and ileum during EGF treatment. A plateau was reached after 7 days where after it started to normalize (P < 0.01). In the longitudinal direction, all intestinal segments became stiffer after EGF treatment for 7 days. After 14 days the curve started to normalize in duodenum and jejunum but not in the ileum.  相似文献   

10.
Low protein intake occurs in humans in relation to diseases, starvation and post-operatively. Low-protein diets may affect the gastrointestinal structure and mechanical function. The aim was to study the passive biomechanical properties and tissue remodelling of the intestine in minks on reduced protein diets. Twenty-seven male minks were divided into three groups receiving different protein level in the diet for 6 weeks: High protein level (group H, 55% energy from protein), moderate protein level (group M, 30% energy from protein) and low protein level (group L, 15% energy from protein) (n=9 for each group). Ten centimetre long segments from duodenum, jejunum and ileum were excised at the end of the study period. The mechanical test was performed as a ramp distension experiment. The intestinal diameter and length, wall thickness, wall area and opening angle were obtained from digitized images of the intestinal segments at pre-selected pressures, no-load and zero-stress states, respectively. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed. The layer thickness was measured from intestinal histological images. No difference in body weight was found between groups at the start of the experiment. However, at the end of the experiment the body weight was smallest in group L (P=0.0003 and 0.0004 compared with groups H and M). Similarly, the wet weight per unit length, wall thickness and area were smallest in group L (P<0.05, P<0.01). The lowest wall thickness was found in the jejunum and ileum in group L (P<0.05), mainly due to decreased mucosa and submucosa thickness. The smallest opening angle and absolute values of residual strain were found in the jejunal segment in group L (P<0.05). No difference was observed for duodenal and ileal segments among the three groups. Feeding the low-protein diet shifted the stress–strain curves to the right for the circumferential direction, indicating the wall become softer in the circumferential direction. However, no significant difference was observed in the longitudinal direction for any of the intestinal segments. In conclusion, this study demonstrated that low-protein diet in minks induce histomorphometric and biomechanical remodelling of the intestine.  相似文献   

11.
Zhao J  Lu X  Zhuang F  Gregersen H 《Biorheology》2000,37(5-6):385-400
Morphometric and passive biomechanical properties were studied in isolated segments of the thoracic and abdominal aorta, left common carotid artery, left femoral artery and the left pulmonary artery in 20 non-diabetic and 28 streptozotocin (STZ)-induced diabetic rats. The diabetic and non-diabetic rats were divided into groups living 1, 4, 8, and 12 weeks after the induction of diabetes (n = 7 for each diabetic group) or sham injection (n = 5 for each group). The mechanical test was performed as a distension experiment where the proximal end of the arterial segment was connected via a tube to the container used for applying pressures to the segment and the distal end was left free. The vessel diameter and length were obtained from digitized images of the arterial segments at pre-selected pressures and at no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data and from the zero-stress state data. The zero-stress state was obtained by cutting vessel rings radially causing the rings to open up into a sector. Diabetes was associated with pronounced morphometric changes, e.g., wall thickness. With respect to the biomechanical data, the opening angle increased and reached a plateau in 4 weeks after which it decreased again (p < 0.05). The opening angle was smallest in the thoracic aorta and largest in the pulmonary artery. Furthermore, it was found that the circumferential stiffness of the arteries studied increased with the duration of diabetes. In the longitudinal direction significant differences were found 8 weeks after injection of STZ in all arteries except the pulmonary artery. In the 12 weeks group, the femoral artery was stiffest in the circumferential direction whereas the thoracic aorta was stiffest in the longitudinal direction. The accumulated serum glucose level correlated with the arterial wall thickness and elastic modulus (correlation coefficient between 0.56 and 0.81).  相似文献   

12.
The oesophagus is subjected to large axial strains in vivo and the zero-stress state is not a closed cylinder but an open circular cylindrical sector. The closed cylinder with no external loads applied is called the no-load state and residual strain is the difference in strain between the no-load state and zero-stress state. To understand oesophageal physiology and pathophysiology, it is necessary to know the distribution of axial strain, the zero-stress state, the stress-strain relations of oesophageal tissue, and the changes of these states and relationships due to biological remodeling of the tissue under stress. This study is addressed to such biomechanical properties in normal rabbits. The oesophagi were marked on the surface in vivo, photographed, excised (in vitro state), photographed again, and sectioned into rings (no-load state) in an organ bath containing calcium-free Kreb's solution with dextran and EGTA added. The rings were cut radially to obtain the zero-stress state for the non-separated wall and further dissected to separate the muscle and submucosa layers. Equilibrium was awaited for 30min in each state and the specimens were photographed in no-load and the zero-stress states. The oesophageal length, circumferences, layer thicknesses and areas, and openings angle were measured from the digitised images. The oesophagus shortened axially by 35% after excision. The in vivo axial strain showed a significant variation with the highest values in the mid-oesophagus (p<0.001). Luminal area, circumferences, and wall and layer thicknesses and areas varied in axial direction (in all tests p<0.05). The residual strain was compressive at the mucosal surface and tensile at the serosal surface. The dissection studies demonstrated shear forces between the two layers in the non-separated wall in the no-load and zero-stress states. In conclusion, our data show significant axial variation in passive morphometric and biomechanical properties of the oesophagus. The oesophagus is a layered composite structure with nonlinear and anisotropic mechanical behaviour.  相似文献   

13.
Some pathological conditions may affect osmolarity, which can impact cell, tissue, and organ volume. The hypothesis of this study is that changes in osmolarity affect the zero-stress state and mechanical properties of the aorta. To test this hypothesis, a segment of mouse abdominal aorta was cannulated in vivo and mechanically distended by perfusion of physiological salt (NaCl) solutions with graded osmolarities from 145 to 562 mosM. The mechanical (circumferential stress, strain, and elastic modulus) and morphological (wall thickness and wall area) parameters in the loaded state were determined. To determine the osmolarity-induced changes of zero-stress state, the opening angle was observed by immersion of the sectors of mouse, rat, and pig thoracic aorta in NaCl solution with different osmolarities. Wall volume and tissue water content of the rings were also recorded at different osmolarities. Our results show that acute aortic swelling due to low osmolarity leads to an increase in wall thickness and area, a change in the stress-strain relationship, and an increase in the elastic modulus (stiffness) in mouse aorta. The opening angle, wall volume, and water content decreased significantly with increase in osmolarity. These findings suggest that acute aortic swelling and shrinking result in immediate mechanical changes in the aorta. Osmotic pressure-induced changes in the zero-stress state may serve to regulate mechanical homeostasis.  相似文献   

14.
The function of the esophagus is mechanical. To understand the function, it is necessary to know how the stress and strain in the esophagus can be computed, and how to determine the stress-strain relationship of the wall materials. The present article is devoted to the issue of determining the incremental elastic moduli in the layers of the esophagus under homeostatic conditions. The esophagus is treated as a two-layered structure consisting of an inner collagen-rich submucosa layer and an outer muscle layer. We adopt a theory based on small perturbation experiments at homeostatic conditions for determination of incremental moduli in circumferential, axial, and cross directions in the two layers. The experiments are inflation, axial stretching, circumferential bending, and axial bending. The analysis takes advantage of knowing the esophageal zero-stress state (an open sector with an opening angle of 59.4 +/- 13.2 deg). The neutral axis was located 27% +/- 1.9%away from the mucosal surface. It is demonstrated that under homeostatic conditions, the incremental moduli are layer and direction dependent. The incremental modulus is the highest in the axial direction. Furthermore, the axial moduli for the two layers are similar, whereas in the circumferential direction, the incremental modulus is a factor of 6 higher in the mucosa-submucosa layer compared to the muscle layer. Hence, the esophagus has to be treated as a composite, anisotropic body. With this additional information, we can then look forward to a vision of truly understanding the mechanical events of the esophagus.  相似文献   

15.
The intimial thickening that occurs in human and animal atherogenesis can be induced by mechanical injury to the endothelium. The objective of the present study was to develop a new method to induce arterial endothelial injury without damage to the media for future investigations of mechanisms of intimal thickening and atherogenesis. A specifically designed catheter was inserted into the common femoral artery of Wistar rats (n = 9) through an arteriotomic mouth. After application of Tyrode solution containing 0.14 M KCl on the surface of the vessel, the vessel contracted onto the catheter. The catheter was then moved back and forth to scrape away the endothelium. The left common femoral artery of the same rat was subjected to the standard balloon injury model. The two models were evaluated structurally, functionally, and biomechanically. Structurally, we verified that both techniques remove the endothelium, but the balloon method damages the media. Functionally, we examined the contractile response of the artery to [K+] and norepinephrine 2 days after the denudation. We found that the right femoral artery underwent contraction in response to [K+], whereas the left artery did not. Furthermore, neither artery responded to norepinephrine. Biomechanically, we measured the pressure-diameter relationship and the zero-stress state of the vessel and computed the stress-strain relation. The circumferential stretch ratios at 120 mmHg were 1.38 +/- 0.08 for the control, 1.41 +/- 0.08 (P > 0.05) for the new method, and 1.56 +/- 0.09 for the balloon injury (P < 0.05). The opening angles at the zero-stress state were 113 +/- 21 degrees for the control, 102 +/- 18 degrees for the new method (P > 0.05), and 8 +/- 13 degrees for the balloon injury (P < 0.001). In conclusion, the new method removes the endothelium while maintaining the structure, contractile function, and biomechanical properties of the vessel.  相似文献   

16.
S Q Liu  Y C Fung 《Biorheology》1992,29(5-6):443-457
Rheological properties of blood vessels are expected to change in disease process if the structure of the vessel wall changes. This is illustrated in diabetes, which can be induced in rat by a single injection of Streptozocin. One of the rheological properties of the blood vessel is the stress-strain relationship. The nonlinear stress-strain relationship of arteries is best expressed as derivations of a strain-energy function. In this paper, the stress-strain relations are measured and the coefficients in the strain energy function of arteries are determined for diabetic and control rats. The meaning of these coefficients are explained. The influence of diabetes on the elastic property of the arteries is expressed by the changes of these coefficients. A point of departure of the present paper from all other blood vessel papers published so far is that all strains used here are referred to the zero-stress state of the arteries, whereas all other papers refer strains to the no-load state. The existence of a large difference between the zero-stress state and no-load state of arteries is one of our recent findings. We have explained that the use of zero-stress state as a basis of strain measurements reveals that the in vivo circumferential stress distribution is quite uniform in the vessel wall at the homeostatic condition. It also makes the strain energy function much more accurate than those in which the residual stress is ignored. Using these new results, the stress and strain distribution in normal and diabetic arteries are presented.  相似文献   

17.
The zero-stress state of rat veins and vena cava   总被引:5,自引:0,他引:5  
The zero-stress state of a vein is, like that of an artery, not a closed cylindrical tube, but is a series of segments whose cross-sections are open sectors. An opening angle of each sector is defined as the angle subtended between two radii joining the midpoint of the inner wall to the tips of the inner wall. Data on the opening angles (mean +/- standard deviation) of the veins and vena cava of the rat are presented. For the superior vena cava and subclavian, jugular, facial, renal, common iliac, saphenous, and plantar veins, the opening angle varies in the range of 25 to 75 deg. The inferior vena cava (below the heart), however, has noncircular, nonaxisymmetric cross-sections, a curved axis, and a rapid longitudinal variation of its "diameter"; its zero-stress state is not circular sectors; but the opening angle is still a useful characterization. The mean opening angle of the interior vena cava varies in the range of 40 to 150 deg in the thoracic portion, and 75 to 130 deg in the abdominal portion, with the larger values occurring about the middle of each portion. There are considerable length, diameter reductions, and wall thickening of the vena cava from the homeostatic state to the no-load state in vitro. Physically, the zero-stress state is the basis of the stress analysis of blood vessels. The change of opening angle is a convenient parameter to characterize any nonuniform remodeling of the vessel wall due to changes in physical stress or chemical environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The influence of arachidonic acid (AA) on the zinc flux rates of jejunal segments, isolated from streptozotocin-induced diabetic rats injected with saline or with insulin, was investigated using an Ussing chamber technique. Although the zinc flux rates from mucosa-to-serosa (Jms) of normal rats were inhibited by addition of 5 microM AA to the jejunal segment bathing medium (46.4 +/- 5.0 vs 32.6 +/- 4.3 nmol/hr/cm2), AA had no effect on the Jms of diabetic rats either with or without insulin treatment. Induction of diabetes also significantly reduced Jms (46.4 +/- 5.0 vs 22.1 +/- 4.9 nmol/hr/cm2), but 3 day insulin treatment (NPH 8 U/Kg/day subcutaneously) did not reverse this effect (29.2 +/- 5.1 nmol/hr/cm2). Addition of AA to the serosal side did not significantly alter the zinc flux rate from serosa-to-mucosa (Jsm) in either control, diabetic or diabetic rats treated with insulin. The net zinc absorption rate (Jnet) of jejunal segments was decreased in diabetic rats compared to controls (13.2 +/- 3.0 vs -0.7 +/- 2.1 nmol/hr/cm2), but normalization of blood glucose with 3 day insulin treatment did not increase Jnet. Addition of AA was associated with a tendency to increase zinc uptake capacity. This change reached statistical significance in insulin treated diabetic rats. Short-circuit current (Isc) for diabetic rats was increased compared to controls but addition of AA to the mucosal side bathing medium decreased Isc in all groups. The results indicate that the zinc flux rate in the small intestine of streptozotocin-induced diabetic rats is decreased, that zinc uptake capacity of the small intestine does not directly reflect the zinc flux rate across the small intestine, and that AA or one of its metabolites may play a significant role in the control of the zinc flux across the intestinal epithelium.  相似文献   

19.
We investigated intestinal oxygen supply and mucosal tissue PO2 during administration of increasing dosages of continuously infused arginine vasopressin (AVP) in an autoperfused, innervated jejunal segments in anesthetized pigs. Mucosal tissue PO2 was measured by employing two Clark-type surface oxygen electrodes. Oxygen saturation of jejunal microvascular hemoglobin was determined by tissue reflectance spectrophotometry. Microvascular blood flow was assessed by laser-Doppler velocimetry. Systemic hemodynamic variables, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline and at 20-min intervals during incremental AVP infusion (n = 8; 0.007, 0.014, 0.029, 0.057, 0.114, and 0.229 IU.kg(-1).h(-1), respectively) or infusion of saline (n=8). AVP infusion led to a significant (P < .05), dose-dependent decrease in cardiac index (from 121 +/- 31 to 77 +/- 27 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) and systemic oxygen delivery (from 14 +/- 3 to 9 +/- 3 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) concomitant with an increase in systemic oxygen extraction ratio (from 31 +/- 4 to 48 +/- 10%). AVP decreased microvascular blood flow (from 133 +/- 47 to 82 +/- 35 perfusion units at 0.114 IU.kg(-1).h(-1)), mucosal tissue PO2 (from 26 +/- 7 to 7 +/- 2 mmHg at 0.229 IU.kg(-1).h(-1)), and microvascular hemoglobin oxygen saturation (from 51 +/- 9 to 26 +/- 12% at 0.229 IU.kg(-1).h(-1)) without a significant increase in mesenteric venous lactate concentration (2.3 +/- 0.8 vs. 3.4 +/- 0.7 mmol/l). We conclude that continuously infused AVP decreases intestinal oxygen supply and mucosal tissue PO2 due to a reduction in microvascular blood flow and due to the special vascular supply in the jejunal mucosa in a dose-dependent manner in pigs.  相似文献   

20.
Studies of various biological tissues have shown that residual strains are important for tissue function. Since a force balance exists in whole wall thickness specimens cut radially, it is evident that layer separation is an important procedure in the understanding of the meaning of residual stresses and strains. The present study investigated the zero-stress state and residual strain distribution in a three-layer model of the pig oesophagus. The middle part of the oesophagus was obtained from six slaughterhouse pigs. Four 3-mm-wide rings were serially cut from each oesophagus. Two of them were used for separating the wall into mucosa-submucosa, inner and outer muscle layers. The remaining two rings were kept as intact rings. The inner and outer circumferences and wall thickness of different layers in intact and separated rings were measured from the digital images in the no-load state and zero-stress state. The opening angle was measured and the residual strain at the inner and outer surface of different layers and the intact wall were computed. Compared with intact sectors (62.8+/-9.8 degrees ), the opening angles were smaller in the inner muscle sectors (37.2+/-11.4 degrees , P<0.01), whereas the opening angles of mucosa-submucosa (63.9+/-6.8 degrees ) and outer muscle sectors (63.9+/-6.8 degrees ) did not differ (P>0.1). Referenced to the zero-stress state of the intact sectors, the inner and outer residual strains of the intact rings was -0.128+/-0.043 and outer residual strain was 0.308+/-0.032. Referenced to the "true" zero-stress state of separated three-layered sectors, the inner residual strain of intact rings were -0.223+/-0.021 (P<0.01) and 0.071+/-0.022 (P<0.01). Referenced to the "true" zero-stress state, the residual strain distribution of different layers in intact rings was shown that the inner surface residual strain was negative at mucosa-submucosa and inner muscle layers and was positive at outer muscle layer, whereas the outer surface residual strain was negative at the mucosa-submucosa layer and positive at the inner and outer muscle layers. For the separated different layered rings, the inner residual strain was negative and outer residual strain was positive; however, the absolute values did not differ (P>0.1). In conclusion, it is possible to microsurgically separate the oesophagus into three layers, i.e., mucosa-submucosa, inner muscle and outer muscle layers, the residual strain differ between the layers, and the residual strain distribution was more uniform after the layers were separated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号