首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells   总被引:9,自引:1,他引:8  
The data concerning the mutagenic, clastogenic and carcinogenic properties of inorganic lead compounds have been conflicting. To investigate whether the genotoxicity of lead is due to indirect effects such as interference with DNA-repair processes, the induction of mutations, sister-chromatid exchanges and strand breaks by lead ions alone as well as in combination with UV light as a standard mutagen were determined. Lead acetate alone does not induce DNA-strand breaks in HeLa cells or mutations at the HPRT locus and sister-chromatid exchanges in V79 Chinese hamster cells. However, at all endpoints tested, lead ions interfere with the processing of UV-induced DNA damage. They inhibit the closing of DNA-strand breaks after UV irradiation and enhance the number of UV-induced mutations and sister-chromatid exchanges, indicating an inhibition of DNA repair. These data point out the necessity to consider such indirect effects when assessing the genotoxicity of metal compounds. As possible mechanisms of repair inhibition we suggest either the interaction with repair enzymes such as polymerase or ligase or else the interaction with calcium-regulated processes, for example with calmodulin.  相似文献   

2.
We have previously reported that carcinogenic nickel compounds decreased global histone H4 acetylation and silenced the gpt transgene in G12 Chinese hamster cells. However, the nature of this silencing is still not clear. Here, we report that nickel ion exposure increases global H3K9 mono- and dimethylation, both of which are critical marks for DNA methylation and long-term gene silencing. In contrast to the up-regulation of global H3K9 dimethylation, nickel ions decreased the expression and activity of histone H3K9 specific methyltransferase G9a. Further investigation demonstrated that nickel ions interfered with the removal of histone methylation in vivo and directly decreased the activity of a Fe(II)-2-oxoglutarate-dependent histone H3K9 demethylase in nuclear extract in vitro. These results are the first to show a histone H3K9 demethylase activity dependent on both iron and 2-oxoglutarate. Exposure to nickel ions also increased H3K9 dimethylation at the gpt locus in G12 cells and repressed the expression of the gpt transgene. An extended nickel ion exposure led to increased frequency of the gpt transgene silencing, which was readily reversed by treatment with DNA-demethylating agent 5-aza-2'-deoxycytidine. Collectively, our data strongly indicate that nickel ions induce transgene silencing by increasing histone H3K9 dimethylation, and this effect is mediated by the inhibition of H3K9 demethylation.  相似文献   

3.
The mutagenicity and cytotoxicity of cis- and trans-Pt(II) diamminedichloride (PDD) were examined in V79 Chinese hamster lung cells and compared with effects on DNA measured by alkaline elution. DNA--protein crosslinks and DNA interstrand crosslinks were detected following doses of cis-PDD which reduced cell survival 80--90% and which produced a mutant frequency of 3 X 10(-4) at the HGPRT locus. Equitoxic doses of trans-PDD were much less mutagenic than cis-PDD. At equitoxic doses, trans-PDD produced more DNA-protein crosslinking than did cis-PDD, but interstrand crosslinking for the two isomers was comparable. Hence, the interstrand crosslink could be the cytotoxic lesion produced by these Pt compounds whereas neither of these DNA lesions are necessarily mutagenic. The mutagenesis produced by cis-PDD could be due to crosslinks of a different type than those produced by trans-PDD or it may be due to monofunctional damage.  相似文献   

4.
The potential of N-hydroxyurea to induce gene mutations in V79 Chinese hamster cells was investigated. Upon metabolic activation by liver microsomes from phenobarbital-treated rats or by isolated rat hepatocytes co-cultured with the V79 cells, hydroxyurea caused a concentration-dependent increase in the frequency of HGPRT-deficient mutants. Hydroxyurea was not mutagenic in the absence of metabolic activation. Addition of catalase inhibited microsome-mediated mutagenicity, indicating that hydrogen peroxide was involved in the formation of the mutagenic DNA lesion. Acetohydroxamic acid and N-hydroxyurethane also induced hepatocyte-mediated mutagenicity, suggesting that the potential to elicit metabolism-dependent mutagenicity may be a common property of aliphatic hydroxamic acids.  相似文献   

5.
Ammonium metavanadate yielded a dose-dependent increase in mutation frequency at the V79 hprt locus following a 24-h exposure period in serum-free F12 medium. Vanadate also increased the mutation frequency of V79 cells by exposure of cells in salts-glucose medium, but these effects were not as striking, or as dose-dependent as they were in serum-free F12 medium. Ammonium metavanadate enhanced the mutation frequency in a V79 variant containing a transfected bacterial gpt gene. These cells are known to be more responsive to oxidative type mutations, and to mutations involving deletions. Although the absolute level of mutations was greater in these cells with ammonium metavanadate, so was the background, and these cells did not exhibit an enhanced mutagenic response to vanadate when compared to the wild-type V79 cells. The vanadate results were compared to a positive control potassium chromate, which exhibited a dose-dependent increase in mutation frequency. Ammonium metavanadate induced DNA-protein crosslinks formation in both Chinese hamster ovary and human MOLT4 cells, and the role of these relatively unrepaired genetic lesions in the mutations produced by vanadate and chromate are discussed.  相似文献   

6.
With regard to contradictory results concerning the mutagenicity of nickel compounds in short-term assays, especially in bacterial test systems, Chinese hamster V79 cells were used to measure mutagenicity, comutagenicity and the induction of sister-chromatid exchanges (SCEs) by NiCl2. We confirmed the induction of mutations at the HGPRT locus as well as SCEs. In addition, NiCl2 shows a pronounced comutagenic effect towards UV. When using confluent cultures or resting cells due to serum deprivation, where more time is given for repair processes, the comutagenic effect is higher compared to logarithmically growing cells (10 and 4 times, respectively, compared to twice). Hence, we attribute this enhancement in mutagenicity to inhibition of DNA repair. Also the increase in induced SCEs after combined treatment with UV and NiCl2 supports this thesis. Furthermore, NiCl2 enhances the cyto-toxicity of cis-DDP about 12-fold. Since no comutagenic effect is observed in combination with MMS, we suggest that the inhibition of DNA repair by Ni(II) applies to all DNA changes that are repaired by the 'long-patch' excision repair system. This inhibition may occur via replacement of other divalent metal ions essential in repair and regulation processes.  相似文献   

7.
The mutagenicity and toxicity of energetic compounds such as 2,4, 6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), hexahydro-1,3, 5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3, 5,7-tetrazocine (HMX), and of amino/nitro derivatives of toluene were investigated in vitro. Mutagenicity was evaluated with the Salmonella fluctuation test (FT) and the V79 Chinese hamster lung cell mutagenicity assay. Cytotoxicity was evaluated using V79 and TK6 human lymphoblastic cells. For the TK6 and V79 assays, TNB and 2, 4,6-triaminotoluene were more toxic than TNT, whereas RDX and HMX were without effect at their maximal aqueous solubility limits. The primary TNT metabolites (2-amino-4,6-dinitrotoluene, 4-amino-2, 6-dinitrotoluene, 2,4-diamino-6-nitrotoluene and 2, 6-diamino-4-nitrotoluene) were generally less cytotoxic than the parent compound. The FT results indicated that TNB, TNT and all the tested primary TNT metabolites were mutagenic. Except for the cases of 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene in the TA98 strain, addition of rat liver S9 resulted in either no effect, or decreased activity. None of the tested compounds were mutagenic for the V79 mammalian cells with or without S9 metabolic activation. Thus, the FT assay was more sensitive to the genotoxic effects of energetic compounds than was the V79 test, suggesting that the FT might be a better screening tool for the presence of these explosives. The lack of mutagenicity of pure substances for V79 cells under the conditions used in this study does not preclude that genotoxicity could actually exist in other mammalian cells. In view of earlier reports and this study, mutagenicity testing of environmental samples should be considered as part of the hazard assessment of sites contaminated by TNT and related products.  相似文献   

8.
D Jenssen 《Mutation research》1986,165(3):185-190
The mutagenicity of MNU, EMS, BMS and UV light was compared by analyzing the dose-response curve just before and after the replicative process of the HGPRT gene in synchronized V79 Chinese hamster cells. This system makes it possible to compare a 10-h period for repair of different mutagenic lesions with no time for repair. Additional time for repair in synchronized V79 cells resulted in a reduced response for MNU and UV, but not for EMS and BMS. This result suggests that an error-free repair process operates on mutagenic lesions in methylated DNA and on thymine dimers, but not on ethylated and butylated DNA. Based on these results, it is concluded that the repair capacity of V79 cells to remove mutagenic lesions is characterized as low for UV, moderate for MNU and not detectable for the mutagenic lesions induced by EMS and BMS.  相似文献   

9.
The mutagenic activity of sodium fluoride at reduced pH was studied in the V79/HGPRT system. Statistical analysis of the results of mutagenicity testing suggests that, despite its high toxicity, sodium fluoride has no mutagenic effects at reduced pH on hamster V79 cells. Short-term treatment of cells with sodium fluoride at reduced pH inhibits growth activity of cells as well as synthesis of pulse-labeled nascent DNA and cumulative RNA synthesis and proteosynthesis. From the results of this study we suggest that an acid environment which supports formation of hydrogen fluoride increases toxic but not mutagenic potencies of sodium fluoride.  相似文献   

10.
The cytotoxic effects of sodium fluoride (NaF) on hamster V79 cells and human EUE cells were studied by measuring the cloning efficiency and DNA, RNA and protein synthesis in cells cultured in the presence of NaF. Potential mutagenicity of NaF was followed on the basis of induced 6-thioguanine-resistant mutants in treated Chinese hamster V79 cells. The results showed that the addition of 10-150 micrograms of NaF per ml of culture medium induced 10-75% cytotoxic effect on hamster V79 cells but had no toxic effect on human EUE cells. NaF was cytotoxic to human EUE cells at considerably higher concentrations (200-600 micrograms/ml). Growth of both cell types with 100 and 200 micrograms of NaF per ml caused inhibition of 14C-thymidine, 14C-uridine and 14C-L-leucine incorporation. This means that NaF inhibits macromolecular synthesis whereby damaging effects were less drastic in human EUE cells. The results of detailed mutagenicity testing on hamster V79 cells showed that NaF did not show any mutagenic effect after long-term (24-h) incubation of hamster cells in the presence of 10-400 micrograms of NaF per ml of culture medium.  相似文献   

11.
The mutagenicity of diethylstilbestrol (DES) in V79 Chinese hamster cells was examined under a variety of conditions. DES over a concentration range 0.01–10 μg/ml failed to induce any increase above the spontaneous frequency of 6-thioguanine-resistant V79 cells. The effect of varying the expression time after treatment in the mutation assay from 3 to 9 days was studied and DES was nonmutagenic at all time points, while N-methyl-N′-nitro-N-nitrosoguanidine was highly mutagenic with a peak response after a 5–7 day expression time. The mutagenicity of benzo[a]pyrene and DES, both of which induce morphological and neoplastic transformation of Syrian hamster embryo (SHE) cells, was tested by cocultivating V79 cells with SHE cells for possible metabolic activation of the chemicals. Neither compound was mutagenic to V79 cells in the absence of SHE cells. Benzo[a]pyrene, but not DES, was mutagenic to V79 cells cocultivated with SHE cells. These results support the observation that DES can induce cell transformation under conditions that do not result in any measurable gene mutations. Moreover, the ability of DES to enhance the recovery of 6-thioguanine-resistant mutations was studied by determining the ability of DES to inhibit metabolic cooperation of V79 cells. Unlike the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate, DES was a weak or inactive inhibitor of metabolic cooperation.  相似文献   

12.
Chinese hamster V79 cells were treated with the anti- and syn-diastereomers of the bay- or fjord-region diol-epoxides of four polycyclic aromatic hydrocarbons, namely benzo[a]pyrene (BP), benzo[c]chrysene (BcC), benzo[g]chrysene (BgC) and benzo[c]phenanthrene (BcPh). The frequency of induction of 6-thioguanine-resistant mutations was determined, and the extent of formation of DNA adducts was measured by 32P-postlabelling. When expressed as mutation frequency per nanomoles compound per millilitre incubation medium, this group of chemicals expressed a 160-fold range in potency. In agreement with previous experimental studies, the anti-diol-epoxide of BcC was highly mutagenic, inducing in excess of 3 x 10(4) mutations/10(6) cells per nmol compound/ml. The mutagenic activities of the anti- and syn-diol-epoxides of BP were 10- and 100-fold lower, respectively. Both diol-epoxides of BgC, the syn-BcC and the anti-BcPh derivatives were also highly mutagenic, and only the syn-BcPh diol-epoxide was less mutagenic than the anti-diol-epoxide of BP. Determination of the levels of DNA adducts formed by the diol-epoxides indicated that the most mutagenic compounds were the most DNA reactive, although the fjord-region diol-epoxides gave rise to more complex patterns of adducts than those of the BP diol-epoxides. When the mutagenicity results were expressed as mutations per femtomoles total adducts formed, all compounds showed similar activities. Thus the potent mutagenicity of the fjord region diol-epoxides appears to be due to the high frequency with which they form DNA adducts in V79 cells, rather than to formation of adducts with greater mutagenic potential.  相似文献   

13.
The mutagenicity of vinyl chloride, vinylidene chloride (1,1-dichloroethylene) and chloroprene (2-chloro-1,3-butadiene) was tested in V79 Chinese hamster cells in the presence of a 15 000 x g liver supernatant from phenobarbitone-pre-treated rats and mice. Mutations in terms of 8-azaguanine and ouabain resistance were induced in a dose-related fasion by exposure to vapour of vinyl chloride in the presence of liver supernatant from phenobarbitone-pretreated rats. Vapours of vinylidene chloride and chloroprene induced a dose-related toxicity in the presence of liver supernatant from phenobarbitone-retreated rats, but these two compounds were not mutagenic in V79 Chinese hamster cells under the present assay conditions. The results are discussed with regard to the metabolic activation of the compounds and to the correlation with their carcinogenicity in man and experimental animals.  相似文献   

14.
The mutagenic activities in V79 Chinese hamster cells and the alkylating abilities towards nicotinamide of the two diastereisomeric cis and trans-3-bromo-1,2-epoxycyclohexanes were measured and compared with those of unsubstituted 1,2-epoxycyclohexane and bromocyclohexane. trans-3-Bromo-1,2-epoxycyclohexane exhibited a mutagenic activity 2.5 times higher than that of its cis diastereoisomer, but very similar to that of the parent unbrominated epoxide, whereas the electrophilic reactivities towards nicotinamide were very similar for the three epoxides tested. Bromocyclohexane showed the highest toxicity, but no alkylating ability. The presence of an epoxide hydrolase activity in the V79 Chinese hamster cells used in the mutagenesis tests has been demonstrated using safrole oxide as the substrate, cis-3-Bromo-1,2-epoxycyclohexane, but not its trans diastereoisomer, is hydrolyzed by the enzyme present in microsomal preparations from the V79 cells. The results indicate that for the cycloaliphatic compounds examined: (1) the introduction of a bromide substituent at the carbon adjacent to the oxirane ring does not cause an increase in mutagenicity, (2) the relative stereochemical configuration at the above carbon does affect the biological activity and (3) the significantly different mutagenicity of the two diastereoisomeric 3-bromo-1,2-epoxycyclohexanes is not attributable to a different electrophilic reactivity, but could be related to some specific interaction with detoxifying enzymes present in the V79 Chinese hamster cells used in the biological experiments.  相似文献   

15.
Mutation at the hprt locus of Chinese hamster V79 cells were induced by treatment with ethyl methanesulphonate (EMS), considered primarily a point mutagen and mitomycin C (MMC), a potent clastogen. EMS gave a dose-dependent induction of mutants while MMC induced a poor mutagenic response. Mutations were analysed using Southern and Northern blotting.Analysis of 9 EMS-induced and 4 spontaneous mutants yielded no detectable alterations in the hprt locus after digestion of DNA with 6 restriction enzymes. Mutants without detectable changes carried presumptive point mutations. In contrast, 4 out of 12 MMC-induced mutants had detectable alterations. 2 of these appeared to have lost the entire hprt gene while the other 2had prodable partial deletions. For these 4 deletion mutants no hprt mRNA was detected. 3 MMC-induced and 1 EMS-induced mutants had reduced levels of hprt mRNA. All the other mutants showed normal levels of hprt mRNA and the message detected was always of the correct size.It is suggested that the poor mutagenic response induced by MMC may be due to the lethal nature of large deletions involving both the hemizygous hprt locus and adjacent essential genes. This may lead to an underestimate of the mutagenicity of clastogenic agents such as MMC in the V79 HPRT mutation assay.  相似文献   

16.
The genotoxic potential of two oxidizing compounds, potassium bromate and potassium superoxide, was comparatively tested in various genotoxicity tests with V79 Chinese hamster cells. Both substances clearly induced cytotoxicity, chromosome aberrations and increased DNA migration in the alkaline comet assay. Using a modified comet assay protocol with FPG protein, a DNA repair enzyme which specifically nicks DNA at sites of 8-oxoguanines and formamidopyrimidines, we detected oxidative DNA base damage only after potassium bromate treatment. HPLC analysis also revealed significantly increased levels of 8-oxodeoxyguanosine after potassium bromate treatment but not after potassium superoxide treatment. Furthermore, potassium bromate clearly induced gene mutations at the HPRT locus while potassium superoxide only had a small effect on HPRT mutant frequencies. Molecular analysis of potassium bromate-induced mutations indicated a high portion of deletion mutations. Three out of four point mutations were G to T transversions which typically arise after replication of 8-oxoguanine. Our results suggest that the two oxidizing compounds induce specific patterns of genotoxic effects that reflect the types of DNA alterations induced by different reactive oxygen species (ROS).  相似文献   

17.
The accumulation of environmental compounds which exhibit genotoxic properties in short-term assays and the increasing lag of time for obtaining confirmation or not in long-term animal mutagenicity and carcinogenicity tests, makes it necessary to develop alternative, rapid methodologies for estimating genotoxic activity in vivo. In the experimental approach used here, it was assumed that the genotoxic activity of foreign compounds in animals, and ultimately humans, is determined among others by exposure level, organ distribution of (DNA) dose, and genotoxic potency per unit of dose, and that knowledge about these 3 parameters may allow to rapidly determine the expected degree of genotoxicity in various organs of exposed animals. In view of the high degree of qualitative correlation between mutagenic activity of chemicals in bacteria and in cultured mammalian cells, and their mutagenic and carcinogenic properties in animals, and in order to be able to distinguish whether mutagenic potency differences were due to differences in (DNA) dose rather than other physiological factors, the results of mutagenicity tests obtained in the present experiments using bacteria and mammalian cells were compared on the basis of DNA dose rather than exposure concentrations, with the following questions in mind: Is there an absolute or a relative correlation between the mutagenic potencies of various ethylating agents in bacteria (E. coli K12) and in mammalian cells (V79 Chinese hamster) after treatment in standardized experiments, and can specific DNA adducts be made responsible for mutagenicity? Is the order of mutagenic potency of various ethylating agents observed in bacteria in vitro representative of the ranking of mutagenic potency found in vivo? Since the answer to this last question was negative, a further question addressed to was whether short-term in vivo assays could be developed for a rapid determination of the presence (and persistence) of genotoxic factors in various organs of mice treated with chemicals. In quantitative comparative mutagenesis experiments using E. coli K12 and Chinese hamster cells treated under standardized conditions in vitro with 5 ethylating agents, there was no indication of an absolute correlation between the number of induced mutants per unit of dose in the bacteria and the mammalian cells. The ranking of mutagenic potency was, however, identical in bacteria and mammalian cells, namely, ENNG greater than ENU greater than or equal to DES greater than DEN congruent to EMS, the mutagenic activity of DEN being dependent on the presence of mammalian liver preparations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The recombinant shuttle vector pSV2gpt was introduced into V79 Chinese hamster cells, and stable transformants expressing the Escherichia coli gpt gene were selected. Two transformants carrying tandem duplications of the plasmid at a single site were identified and fused to simian COS-1 cells. Plasmid DNA recovered from the heterokaryons was used to transform a Gpt- derivative of E. coli HB101, and the relative frequency of plasmids carrying a mutation in the gpt gene was determined. The high frequency of Gpt- plasmids (ca. 1%) was similar to that observed when plasmid was recovered from COS-1 cells which had been transfected with pSV2gpt. Most of the mutant plasmids had rearrangements in the region containing the gpt gene.  相似文献   

19.
N4-Aminocytidine induced mutation to 6-thioguanine resistance in Chinese hamster lung V79 cells in culture. Previous studies with experimental systems of in vitro DNA synthesis and of phage and bacterial mutagenesis have shown that this nucleoside analog induces base-pair transitions through its incorporation into DNA, with its erroneous base-pairing property. Incorporation of exogenously added [5-3H]N4-aminocytidine into the DNA of V79 cells was in fact observed in the present study. N4-Aminodeoxycytidine was not mutagenic for the V79 cells. Several alkylated N4-aminocytidine derivatives were tested for their mutagenicity in this system. Those with an alkyl group on the N'-nitrogen of the hydrazino group at position 4 of N4-aminocytidine were mutagenic, but those having an alkyl on the N4-nitrogen were not. These results are consistent with those previously observed in the bacterial mutagenesis systems, and agree with a mechanism of mutation in which a tautomerization of N4-aminocytosine is the necessary step for causing the erroneous base pairing.  相似文献   

20.
Arsenic compounds are known carcinogens. Although many carcinogens are also mutagens, we have previously shown that sodium arsenite is not mutagenic at either the Na+/K+ ATPase orhprt locus in Chinese hamster V79 cells. It can, however, enhance UV-mutagenesis. We now confirm the nonmutagenicity of sodium arsenite in line G12, a pSV2gpt-transformed V79 (hprt ) cell line, which is able to detect multilocus deletions in addition to point mutations and small deletions. The lack of arsenic mutagenicity has led to studies emphasizing its comutagenicity. Sodium arsenite at relatively nontoxic concentrations (5 μM for 24 h or 10 μM for 3 h) is comutagenic withN-methyl-N-nitrosourea (MMU) at thehprt locus in V79 cells. Using a nick translation assay, which measures DNA strand breaks by incorporating radioactive deoxyribonucleoside monophosphate at their 3′OH ends in permeabilized cells, we found that much more incorporation was seen in cells treated with MNU (4 mM, 15 min) followed by 3-h incubation with 10 μM sodium arsenite compared with cells exposed to the same MNU treatment followed by 3-h incubation without sodium arsenite. This result shows that in the presence of arsenite, strand breaks resulting from MNU or its repair accumulate over a 3-h period. We suggest that the repair of MNU-induced DNA lesions may be inhibited by arsenite either by affecting the incorporation of dNMPs into the MNU-damaged DNA template or by interfering with the ligation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号