首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of U2AF35 and U2AF65 in enhancer-dependent splicing.   总被引:5,自引:1,他引:5       下载免费PDF全文
Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires interactions between the SR proteins and the 35-kDa subunit of U2AF (U2AF35). However, more recent experiments have not supported the U2AF recruitment model. Here we provide additional evidence for the recruitment model. First, we confirm that base substitutions that convert weak 3' splice sites to a consensus sequence, and therefore increase U2AF binding, relieve the requirement for a splicing activator. Second, we confirm that splicing activators are required for the formation of early spliceosomal complexes on substrates containing weak 3' splice sites. Most importantly, we find that splicing activators promote the binding of both U2AF65 and U2AF35 to weak 3' splice sites under splicing conditions. Finally, we show that U2AF35 is required for maximum levels of activator-dependent splicing. We conclude that a critical function of splicing activators is to recruit U2AF to the weak 3' splice sites of enhancer-dependent introns, and that efficient enhancer-dependent splicing requires U2AF35.  相似文献   

2.
U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) is an essential component of the splicing machinery that is composed of two protein subunits, the 35 kDa U2AF35 (U2AF1) and the 65 kDa U2AF65 (U2AF2). U2AF interacts with various splicing factors within this machinery. Here we expand the list of mammalian splicing factors that are known to interact with U2AF65 as well as the list of nuclear proteins not known to participate in splicing that interact with U2AF65. Using a yeast two-hybrid system, we found fourteen U2AF65-interacting proteins. The validity of the screen was confirmed by identification of five known U2AF65-interacting proteins, including its heterodimeric partner, U2AF35. In addition to binding these known partners, we found previously unrecognized U2AF65 interactions with four splicing-related proteins (DDX39, SFRS3, SFRS18, SNRPA), two zinc finger proteins (ZFP809 and ZC3H11A), a U2AF65 homolog (RBM39), and two other regulatory proteins (DAXX and SERBP1). We report which regions of U2AF65 each of these proteins interacts with and we discuss their potential roles in regulation of pre-mRNA splicing, 3′-end mRNA processing, and U2AF65 sub-nuclear localization. These findings suggest expanded roles for U2AF65 in both splicing and non-splicing functions.  相似文献   

3.
The polypyrimidine-tract (Py-tract) adjacent to 3' splice sites is an essential splicing signal and is recognized by several proteins, including the general splicing factor U2AF65 and the highly specific splicing repressor Sex-lethal (SXL). They both contain ribonucleoprotein-consensus RNA-binding motifs. However, U2AF65 recognizes a wide variety of Py-tracts, whereas SXL recognizes specific Py-tracts such as the nonsex-specific Py-tract of the transformer pre-mRNA. It is not understood how these seemingly similar proteins differentially recognize the Py-tract. To define these interactions, we used chemical interference and protection assays, saturation mutagenesis, and RNAs containing modified nucleotides. We find that these proteins recognize distinct features of the RNA. First, although uracils within the Py-tract are protected from chemical modification by both of these proteins, modification of any one of seven uracils by hydrazine, or any of eight phosphates by ethylnitrosourea strongly interfered with the binding of SXL only. Second, the 2' hydroxyl groups or backbone conformation appeared important for the binding of SXL, but not U2AF65. Third, although any of the bases (cytosine > adenine > guanine) could substitute for uracils for U2AF65 binding, only guanine partially substituted for certain uracils for SXL binding. The different dependence on individual contacts and nucleotide preference may provide a basis for the different RNA-binding specificities and thus functions of U2AF65 and SXL in 3' splice site choice.  相似文献   

4.
The U2 auxiliary factor large subunit (U2AF65) is an essential pre-mRNA splicing factor for the initial stages of spliceosome assembly. Tandem RNA recognition motifs (RRM)s of U2AF65 recognize polypyrimidine tract signals adjacent to 3' splice sites. Despite the central importance of U2AF65 for splice site recognition, the relative arrangement of the U2AF65 RRMs and the energetic forces driving polypyrimidine tract recognition remain unknown. Here, the solution conformation of the U2AF65 RNA binding domain determined using small angle x-ray scattering reveals a bilobal shape without apparent interdomain contacts. The proximity of the N and C termini within the inter-RRM configuration is sufficient to explain the action of U2AF65 on spliceosome components located both 5' and 3' to its binding site. Isothermal titration calorimetry further demonstrates that an unusually large enthalpy-entropy compensation underlies U2AF65 recognition of an optimal polyuridine tract. Qualitative similarities were observed between the pairwise distance distribution functions of the U2AF65 RNA binding domain and those either previously observed for N-terminal RRMs of Py tract-binding protein that lack interdomain contacts or calculated from the high resolution coordinates of a U2AF65 deletion variant bound to RNA. To further test this model, the shapes and RNA interactions of the wild-type U2AF65 RNA binding domain were compared with those of U2AF65 variants containing either Py tract-binding protein linker sequences or a deletion within the inter-RRM linker. Results of these studies suggest inter-RRM conformational plasticity as a possible means for U2AF65 to universally identify diverse pre-mRNA splice sites.  相似文献   

5.
U2 snRNP auxiliary factor (U2AF) is an essential heterodimeric splicing factor composed of two subunits, U2AF(65) and U2AF(35). During the past few years, a number of proteins related to both U2AF(65) and U2AF(35) have been discovered. Here, we review the conserved structural features that characterize the U2AF protein families and their evolutionary emergence. We perform a comprehensive database search designed to identify U2AF protein isoforms produced by alternative splicing, and we discuss the potential implications of U2AF protein diversity for splicing regulation.  相似文献   

6.
The essential pre-mRNA splicing factor, U2AF(65), guides the early stages of splice site choice by recognizing a polypyrimidine (Py) tract consensus sequence near the 3' splice site. Since Py tracts are relatively poorly conserved in higher eukaryotes, U2AF(65) is faced with the problem of specifying uridine-rich sequences, yet tolerating a variety of nucleotide substitutions found in natural Py tracts. To better understand these apparently contradictory RNA binding characteristics, the X-ray structure of the U2AF(65) RNA binding domain bound to a Py tract composed of seven uridines has been determined at 2.5 A resolution. Specific hydrogen bonds between U2AF(65) and the uracil bases provide an explanation for polyuridine recognition. Flexible side chains and bound water molecules form the majority of the base contacts and potentially could rearrange when the U2AF(65) structure adapts to different Py tract sequences. The energetic importance of conserved residues for Py tract binding is established by analysis of site-directed mutant U2AF(65) proteins using surface plasmon resonance.  相似文献   

7.
Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing factor 1 (SF1) and U2 auxiliary factor (U2AF65) cooperatively recognize the 3′ splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF65 splicing factors, as well as the SF1/U2AF65 complex in the absence and presence of AdML (adenovirus major late) splice site RNAs. The molecular dimensions of the SF1/U2AF65/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF65 complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF65 splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF65/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing.  相似文献   

8.
The U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) is a heterodimeric splicing factor composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. The large subunit of U2AF recognizes the intronic polypyrimidine tract, a sequence located adjacent to the 3' splice site that serves as an important signal for both constitutive and regulated pre-mRNA splicing. The small subunit U2AF(35) interacts with the 3' splice site dinucleotide AG and is essential for regulated splicing. Like several other proteins involved in constitutive and regulated splicing, both U2AF(65) and U2AF(35) contain an arginine/serine-rich (RS) domain. In the present study we determined the role of RS domains in the subcellular localization of U2AF. Both U2AF(65) and U2AF(35) are shown to shuttle continuously between the nucleus and the cytoplasm by a mechanism that involves carrier receptors and is independent from binding to mRNA. The RS domain on either U2AF(65) or U2AF(35) acts as a nuclear localization signal and is sufficient to target a heterologous protein to the nuclear speckles. Furthermore, the results suggest that the presence of an RS domain in either U2AF subunit is sufficient to trigger the nucleocytoplasmic import of the heterodimeric complex. Shuttling of U2AF between nucleus and cytoplasm possibly represents a means to control the availability of this factor to initiate spliceosome assembly and therefore contribute to regulate splicing.  相似文献   

9.
Due to their inherent stability, thermophilic bacteria and archaea serve as important resources for biochemical and biophysical analyses of many biological processes. Unfortunately, scientists characterizing eukaryote-specific processes, such as nuclear pre-mRNA splicing, are unable to take advantage of these sources of thermostable proteins. To identify and provide a source of thermostable eukaryotic proteins, we are characterizing splicing factors in the thermotolerant deep-sea vent polychaete, Alvinella pompejana. This worm, also known as the Pompeii worm, is found in the extreme environment of deep-sea hydrothermal vents, and is one of the most thermotolerant eukaryotic organisms known. We report on detailed analyses of U2AF65, the large subunit of the U2 small nuclear ribonucleoprotein auxiliary factor, an essential splicing factor important for intron definition and alternative splicing. The cloning and characterization of Pompeii U2AF65 show it is highly similar to human U2AF65 in sequence and function and is more thermostable than the human protein when bound to RNA in vitro. Notably, Pompeii U2AF65 can restore splicing in a human extract depleted of human U2AF. We also determine that the general splicing mechanisms and signal sequences are conserved in the Pompeii worm, an annelid which has previously been uncharacterized in terms of splicing factors and signals.  相似文献   

10.
Splicing and 3′-end processing (including cleavage and polyadenylation) of vertebrate pre-mRNAs are tightly coupled events that contribute to the extensive molecular network that coordinates gene expression. Sequences within the terminal intron of genes are essential to stimulate pre-mRNA 3′-end processing, although the factors mediating this effect are unknown. Here, we show that the pyrimidine tract of the last splice acceptor site of the human β-globin gene is necessary to stimulate mRNA 3′-end formation in vivo and binds the U2AF 65 splicing factor. Naturally occurring β-thalassaemia-causing mutations within the pyrimidine tract reduces both U2AF 65 binding and 3′-end cleavage efficiency. Significantly, a fusion protein containing U2AF 65, when tethered upstream of a cleavage/polyadenylation site, increases 3′-end cleavage efficiency in vitro and in vivo. Therefore, we propose that U2AF 65 promotes 3′-end processing, which contributes to 3′-terminal exon definition.  相似文献   

11.
The human telomeric protein TRF1 is a component of the six-subunit protein complex shelterin, which provides telomere protection by organizing the telomere into a high-order structure. TRF1 functions as a negative regulator of telomere length by controlling the access of telomerase to telomeres. Thus, the cellular abundance of TRF1 at telomeres should be maintained and tightly regulated to ensure proper telomere function. Here, we identify U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65), an essential pre-mRNA splicing factor, as a novel TRF1-interacting protein. U2AF65 interacts with TRF1 in vitro and in vivo and is capable of stabilizing TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. We also found that U2AF65 interferes with the interaction between TRF1 and Fbx4, an E3 ubiquitin ligase for TRF1. Depletion of endogenous U2AF65 expression by short interfering RNA (siRNA) reduced the stability of endogenous TRF1 whereas overexpression of U2AF65 significantly extended the half-life of TRF1. These findings demonstrate that U2AF65 plays a critical role in regulating the level of TRF1 through physical interaction and ubiquitin-mediated proteolysis. Hence, U2AF65 represents a new route for modulating TRF1 function at telomeres.  相似文献   

12.
PUF60: a novel U2AF65-related splicing activity   总被引:5,自引:0,他引:5       下载免费PDF全文
We have identified a new pyrimidine-tract binding factor, PUF, that is required, together with U2AF, for efficient reconstitution of RNA splicing in vitro. The activity has been purified and consists of two proteins, PUF60 and the previously described splicing factor p54. p54 and PUF60 form a stable complex in vitro when cotranslated in a reaction mixture. PUF activity, in conjunction with U2AF, facilitates the association of U2 snRNP with the pre-mRNA. This reaction is dependent upon the presence of the large subunit of U2AF, U2AF65, but not the small subunit U2AF35. PUF60 is homologous to both U2AF65 and the yeast splicing factor Mud2p. The C-terminal domain of PUF60, the PUMP domain, is distantly related to the RNA-recognition motif domain, and is probably important in protein-protein interactions.  相似文献   

13.
14.
15.
16.
U2 snRNP auxiliary factor (U2AF) promotes U2 snRNP binding to pre-mRNAs and consists of two subunits of 65 and 35 kDa, U2AF(65) and U2AF(35). U2AF(65) binds to the polypyrimidine (Py) tract upstream from the 3' splice site and plays a key role in assisting U2 snRNP recruitment. It has been proposed that U2AF(35) facilitates U2AF(65) binding through a network of protein-protein interactions with other splicing factors, but the requirement and function of U2AF(35) remain controversial. Here we show that recombinant U2AF(65) is sufficient to activate the splicing of two constitutively spliced pre-mRNAs in extracts that were chromatographically depleted of U2AF. In contrast, U2AF(65), U2AF(35), and the interaction between them are required for splicing of an immunoglobulin micro; pre-RNA containing an intron with a weak Py tract and a purine-rich exonic splicing enhancer. Remarkably, splicing activation by U2AF(35) occurs without changes in U2AF(65) cross-linking to the Py tract. These results reveal substrate-specific requirements for U2AF(35) and a novel function for this factor in pre-mRNA splicing.  相似文献   

17.
The essential splicing factors SF1 and U2AF play an important role in the recognition of the pre-mRNA 3' splice site during early spliceosome assembly. The structure of the C-terminal RRM (RRM3) of human U2AF(65) complexed to an N-terminal peptide of SF1 reveals an extended negatively charged helix A and an additional helix C. Helix C shields the potential RNA binding surface. SF1 binds to the opposite, helical face of RRM3. It inserts a conserved tryptophan into a hydrophobic pocket between helices A and B in a way that strikingly resembles part of the molecular interface in the U2AF heterodimer. This molecular recognition establishes a paradigm for protein binding by a subfamily of noncanonical RRMs.  相似文献   

18.
The human splicing factor U2 auxiliary factor (hsU2AF) is comprised of two interacting subunits of 65 and 35 kDa. Previously we identified the Schizosaccharomyces pombe homolog, spU2AF59, of the human large subunit. We have screened a fission yeast cDNA library in search of proteins that interact with spU2AF59 using the yeast two-hybrid system and have identified a homolog of the hsU2AF35 subunit. The S. pombe U2AF small subunit is a single copy gene that encodes a protein which shares 55% amino acid identity and 17% similarity with the human small subunit. Unlike the human protein, the yeast protein lacks an arginine/serine-rich region. The predicted molecular mass of the spU2AF small subunit is 23 kDa. The region of spU2AF59 that interacts with spU2AF23 is similar to the region in which the human small and large subunits interact.  相似文献   

19.
We have analyzed the interaction between the U2AF subunits U2AF35 and U2AF65 in vivo using fluorescence resonance energy transfer (FRET) microscopy. U2 snRNP Auxiliary Factor (U2AF) is an essential pre-mRNA splicing factor complex, comprising 35-kDa (U2AF35) and 65-kDa (U2AF65) subunits. U2AF65 interacts directly with the polypyrimidine tract and promotes binding of U2 snRNP to the pre-mRNA branchpoint, while U2AF35 associates with the conserved AG dinucleotide at the 3' end of the intron and has multiple functions in the splicing process. Using two different approaches for measuring FRET, we have identified and spatially localized sites of direct interaction between U2AF35 and U2AF65 in vivo in live cell nuclei. While U2AF is thought to function as a heterodimeric complex, the FRET data have also revealed a novel U2AF35 self-interaction in vivo, which is confirmed in vitro using biochemical assays. These results suggest that the stoichiometry of the U2AF complex may, at least in part, differ in vivo from the expected heterodimeric complex. The data show that FRET studies offer a valuable approach for probing interactions between pre-mRNA splicing factors in vivo.  相似文献   

20.
罗艳  王瑛 《遗传》2008,30(11):1499-1505
摘要: U2AF(U2 snRNP auxiliary factor)是参与前体mRNA剪接的重要辅助因子, 在进化上具有较高保守性。文章根据茄子BAC 77N19(GenBank登录号: EF517791)的基因组序列信息和烟草NpU2AF65a和NpU2AF65b基因的全长cDNA序列, 设计特异引物, 经cDNA末端快速扩增法(RACE)获得了1 986 bp的茄子同源基因(SmU2AF65)全长cDNA, GenBank登录号为EU543263。序列分析表明该序列包含1 665 bp的可阅读框, 编码554个氨基酸, 在氨基酸序列的C末端有3个保守的RNA识别结构域RRM。RT-PCR分析表明, SmU2AF65基因在不同组织中均有表达,但是该基因通过可变剪接至少能够产生两个转录本, 在根中产生与其他组织中不同的剪切子  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号