首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retention of cadmium and selenium influence on Cd retention in the muscle, liver and kidneys of hens, chickens and in eggs was studied. Cadmium (Cd) as cadmium chloride (CdCl(2)) and selenium (Se) as sodium selenite (Na(2)SeO(3)) were added to feed at dosages: group 0-control, group 1-20 mg/kg Cd, group 2-30 mg/kg Cd + 4 mg/kg Se. The birds were exposed to Cd for 8 weeks. Cadmium level in hens and cocks was found highest in the kidneys, followed by the liver and muscle. Se supplementation resulted in Cd increase in the muscle tissue and in the reduction of Cd content in the liver and in significant decrease in the kidneys (p < 0.05). A higher Cd level in the yolk and lower in the white was noted in both experimental groups. Nonsignificant increase of Cd in eggs was noted in experimental groups with Se supplementation. Level of cadmium in organs of 7-day-old chicks hatched from Cd-treated hens in both experimental groups was low but the tendency to accumulate preferentially the Cd in the liver and kidneys was recorded. Supplementation of selenium in hens and cocks was not reflected in the decrease of Cd in these two organs of F(1) chickens but was reflected in increase in the muscle. In spite of relatively high Cd levels in the organs of layers no layer-egg-chickens transfer was observed. It was confirm that kidneys and liver are organs more attacked by dietary cadmium than muscle. Supplementation of low dose of Se resulted in decrease of cadmium deposition in analyzed organs.  相似文献   

2.
1. Enzyme modulation by cadmium in selected organs of the fish, Barbus conchonius (rosy barb), was investigated in vivo (48 hr exposure to 12.6 mg/l cadmium chloride) and in vitro (10(-6) M cadmium chloride). 2. The acetylcholinesterase (AchE) activity was depressed in the gills but stimulated in the skeletal muscles and brain in vivo. The hepatic, branchial, and renal acid phosphatase (AcP) activity decreased marginally in vivo but it was significantly increased in the gut and ovary. In vitro, except for the liver, the AcP activity was depressed in the selected organs. Collaterally, gut alkaline phosphatase (AlP) was significantly inhibited but a pronounced stimulation was noted in the kidneys and ovary in vivo. In vitro, the AlP activity was conspicuously elevated in the kidneys and gut, and moderately in the gills. 3. Cadmium inhibited the glutamate-oxaloacetate and glutamate-pyruvate transaminases (GOT and GPT) in the liver, gills and kidneys in vivo. In vitro, the GOT and GPT activities were decreased in the liver, gills and kidneys. The lactic dehydrogenase (LDH) was significantly stimulated by Cd in the heart in vivo but in vitro the metal inhibited the enzyme in the gills. 4. Enzymes in the liver, followed by those in the kidneys and gills seem to be most seriously affected by Cd poisoning in this fish.  相似文献   

3.
Manna P  Sinha M  Sil PC 《Amino acids》2009,36(3):417-428
The present study has been carried out to investigate the role of taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, in ameliorating cadmium-induced renal dysfunctions in mice. Cadmium chloride (CdCl2) has been selected as the source of cadmium. Intraperitoneal administration of CdCl2 (at a dose of 4 mg/kg body weight for 3 days) caused significant accumulation of cadmium in renal tissues and lessened kidney weight to body weight ratio. Cadmium administration reduced intracellular ferric reducing/antioxidant power (FRAP) of renal tissues. Levels of serum marker enzymes related to renal damage, creatinine and urea nitrogen (UN) have been elevated due to cadmium toxicity. Cadmium exposure diminished the activities of enzymatic antioxidants, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) as well as non-enzymatic antioxidant, reduced glutathione (GSH) and total thiols. On the other hand, the levels of oxidized glutathione (GSSG), lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of superoxide radicals and activities of cytochrome P450 enzymes (CYP P450s) have been found to increase due to cadmium intoxication. Treatment with taurine (at a dose of 100 mg/kg body weight for 5 days) before cadmium intoxication prevented the toxin-induced oxidative impairments in renal tissues. The beneficial role of taurine against cadmium-induced renal damage was supported from histological examination of renal segments. Vitamin C, a well-established antioxidant was used as the positive control in the study. Experimental evidence suggests that both taurine and vitamin C provide antioxidant defense against cadmium-induced renal oxidative injury. Combining all, results suggest that taurine protects murine kidneys against cadmium-induced oxidative impairments, probably via its antioxidative property.  相似文献   

4.
Cadmium is an environmental toxic metal implicated in human diseases. In the present study, the effect of diphenyl diselenide, (PhSe)(2), on sub-chronic exposure with cadmium chloride (CdCl(2)) was investigated in rats. Male adult Swiss albino rats received CdCl(2) (10 micromol/kg, orally) and (PhSe)(2) (5 micromol/kg, orally) for a period of 30 days. A number of parameters were examined as indicators of toxicity, including hepatic and renal damage, glucose and glycogen levels and markers of oxidative stress. Cadmium content, liver histology, delta-aminolevulinate dehydratase (delta-ALA-D) activity, metallothionein (MT) levels were also evaluated. Cadmium content determined in the tissue of rats exposed to CdCl(2) provides evidence that the liver is the major cadmium target where (PhSe)(2) acts. The concentration of cadmium in liver was about three fold higher than that in kidney, and (PhSe)(2) reduced about six fold the levels of this metal in liver of rats exposed. Rats exposed to CdCl(2) showed histological alterations abolished by (PhSe)(2) administration. (PhSe)(2) administration ameliorated plasma malondialdehyde (MDA) levels, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma-glutamyl transferase (GGT) activities increased by CdCl(2) exposure. Urea and bilirubin levels increased by CdCl(2) exposure were also reduced by (PhSe)(2). In conclusion, this study demonstrated that co-treatment with (PhSe)(2) ameliorated hepatotoxicity and cellular damage in rat liver after sub-chronic exposure with CdCl(2). The proposed mechanisms by which (PhSe)(2) acts in this experimental protocol are its antioxidant properties and its capacity to form a complex with cadmium.  相似文献   

5.
Cadmium (Cd) is a heavy metal with various human exposure sources. It accumulates in the liver, forming a complex with metallothionein protein and progresses to other organs. As a heavy metal, cadmium can replace calcium and other divalent ions and disturb their cascades, ultimately affecting the vital organs. Since cadmium acetate (CA) is considered more lethal than other Cd compounds, the current study examines the effect of different concentrations of CA doses in drinking water for different exposure times in murine models (Mus musculus). After the exposure period, the murine models were then examined histopathologically and biochemically. The histopathological examination of the heart, liver, and kidneys of the experimental group showed extensive degenerative effects. Atomic absorption spectroscopy was used to determine the quantity of cadmium in serum, kidney, and hepatic tissues. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of hepatic proteins, especially metallothionein, directly related to Cd administration. The biochemical parameters, including creatine kinase, alanine aminotransferase, aspartate aminotransferase, total proteins, glucose, urea, uric acid, and creatinine, were also analyzed. After thorough histochemical and biochemical analysis, it was concluded that even low dose exposure of CA is hazardous to murine models with damaging effects.  相似文献   

6.
The effects of cadmium on performance, antioxidant defense system, liver and kidney functions, and cadmium accumulation in selected tissues of broiler chickens were studied. Whether the possible adverse effects of cadmium would reverse with the antioxidant ascorbic acid was also investigated. Hence, 4 treatment groups (3 replicates of 10 chicks each) were designed in the study: control, ascorbic acid, cadmium, and cadmium plus ascorbic acid. Cadmium was given via the drinking water at a concentration of 25 mg/L for 6 wk. Ascorbic acid was added to the basal diet at 200 mg/kg either alone or with cadmium. Cadmium decreased the body weight (BW), body weight gain (BWG), and feed efficiency (FE) significantly at the end of the experiment, wheras its effect on feed consumption (FC) was not significant. Cadmium increased the plasma malondialdehyde (MDA) level as an indicator of lipid peroxidation and lowered the activity of blood superoxide dismutase (SOD). Liver function enzymes, aspartate amino transferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and gamma glutamyl transferase (GGT) activities were not changed by cadmium. Cadmium ingestion did not alter serum creatinine levels. Although the serum cadmium level was not elevated, cadmium mainly accumulated in the kidneys, liver, pancreas, and muscle. Ascorbic acid supplementation resulted in a reduction of MDA level previously increased by cadmium and a restoration in SOD activity. However, ascorbic acid did not ameliorate the growth inhibitory effect of cadmium nor did it prevent accumulation of cadmium in analyzed tissues. These data indicate that oxidative stress, induced by cadmium, plays a role in decreasing the performance of broilers and that dietary supplementation by ascorbic acid might be useful in reversing the lipid peroxidation induced by cadmium and partly alleviating the adverse effect of cadmium on performance of broilers.  相似文献   

7.
Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl2) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl2 (2–5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P < 0.05 was considered as statistically significant. The haematocrit (HCT) significantly increased and blood coagulation time significantly reduced in the nano-zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P < 0.05). It seems that in the oral administration of nano-zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not suitable for protection against cadmium intoxication.  相似文献   

8.
1. Enzyme modulation by cadmium in selected organs of the fish, Barbus conchonius (rosy barb), was investigated in vivo (48 hr exposure to 12.6 mg/1 cadmium chloride) and in vitro (10−6M cadmium chloride).2. The acetylcholinesterase (AchE) activity was depressed in the gills but stimulated in the skeletal muscles and brain in vivo. The hepatic, branchial, and renal acid phosphatase (AcP) activity decreased marginally in vivo but it was significantly increased in the gut and ovary. In vitro, except for the liver, the AcP activity was depressed in the selected organs. Collaterally, gut alkaline phosphatase (A1P) was significantly inhibited but a pronounced stimulation was noted in the kidneys and ovary in vivo. In vitro, the AIP activity was conspicuously elevated in the kidneys and gut, and moderately in the gills.3. Cadmium inhibited the glutamate-oxaloacetate and glutamate-pyruvate transaminases (GOT and OPT) in the liver, gills and kidneys in vivo. In vitro, the GOT and GPT activities were decreased in the liver, gills and kidneys. The lactic dehydrogenase (LDH) was significantly stimulated by Cd in the heart in vivo but in vitro the metal inhibited the enzyme in the gills.4. Enzymes in the liver, followed by those in the kidneys and gills seem to be most seriously affected by Cd poisoning in this fish.  相似文献   

9.
Clinical evaluation of Deferasirox for removal of cadmium ions in rat   总被引:1,自引:0,他引:1  
An investigation was conducted to evaluate the ability of Deferasirox (ICL670 or Exjade) following the distribution of cadmium salt in male Wistar rats. Cadmium was introduced to several groups of weanling male Wistar rats through different means, by act of drinking, feeding. A control group was fed on a diet containing normal level of iron. After a period of 30 days, all the rats administered cadmium were severely anemic and showed toxicity symptoms through loss of hair and increasing in cadmium and reduction in iron levels in blood. Chelation therapy was carried out to remove the toxic element from the body. The ability of Deferasirox chelator in removing cadmium was investigated this chelator for 1 week to the remaining rats of similar groups. The results showed that the cadmium level present in blood was significantly reduced and at the same time, iron concentration returned to the normal level. It was concluded that Deferasirox chelator is able to remove cadmium from the body and could be used for the treatment of complications and eradication of symptoms of cadmium intoxication.  相似文献   

10.
Most effective selenium correction of the rats liver antioxidative status disturbance were found after 7-days intoxication by aluminium chloride in the dose 1/5 LD50 than 7-days intoxication cadmium chloride in similar dose.  相似文献   

11.
Disruption of iron homeostasis at the levels of intestinal absorption or erythropoiesis contributes to cadmium toxicity. Cellular iron homeostasis in metazoans is maintained by the iron regulatory proteins (IRPs) that regulate the synthesis of proteins involved in the transport, use, and storage of iron. The effect of cadmium intoxication on this regulatory system has been investigated in a cellular model of human epithelium. Cadmium exposure of HeLa cells did not activate the IRPs; rather, the amount of these proteins relative to that of housekeeping proteins decreased. Accordingly, the transferrin receptor mRNA level decreased upon cadmium insult. In a more integrated investigation, separate groups of mice had free access to different doses of cadmium in drinking water for 3 weeks. Cadmium accumulated in all analyzed organs, but its concentration in mouse tissues did not correlate with changes of the activity of the IRPs. The intoxicated mice did not show any sign of anemia, indicating that iron homeostasis was not immediately disrupted after the onset of cadmium accumulation. These data establish that cadmium destabilizes IRPs in mammalian cells, but that iron imbalance is not an early event of cadmium intoxication.  相似文献   

12.
Cadmium is one of the inflammation‐related xenobiotics and has been regarded as a potent carcinogen. Gardenia jasminoides Ellis (GJE) has been used to cure inflammation in Korean folk medicine for a long time. The purpose of present study is the inhibitory effect of glycoprotein isolated from GJE (27 kDa) on inflammation mechanism in cadmium chloride‐exposed ICR mice. We evaluated the activities of lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and thiobarbituric acid‐reactive substances (TBARS), activities of anti‐oxidative enzymes [superoxide dismutase (SOD) and gluthathione peroxidase (GPx)], activities of c‐Jun N‐terminal protein kinase (JNK), heat shock protein 27 (Hsp27), activator protein (AP)‐1, nuclear factor (NF)‐κB and expression of inflammation‐related mediators including tumor necrosis factor (TNF)‐α and interleukin (IL)‐6 in cadmium chloride‐exposed ICR mice using immunoblot analysis, EMSA and RT‐PCR. It notes that mice plasma was used to measure ALT, LDH, and TBARS after treatment with cadmium chloride alone or cadmium chloride under the pretreatment with GJE glycoprotein. Liver tissues were used to assess activities of anti‐oxidant enzymes, SAPK/JNK, Hsp27, AP‐1, NF‐κB, TNF‐α, and IL‐6 in this study. The results obtained from this study revealed that GJE glycoprotein (10 mg/kg) decreased the levels of LDH, ALT and TBARS, whereas increased the activity of hepatic anti‐oxidant enzymes (SOD and GPx) in cadmium chloride‐exposed ICR mice. Moreover, it decreased the activity of JNK/AP‐1, NF‐κB, Hsp27, and pro‐inflammatory cytokines (TNF‐α and IL‐6). Taken together, the results in this study suggest that GJE glycoprotein inhibits the expression of inflammation‐related cytokines (TNF‐α and IL‐6) in cadmium chloride‐exposed ICR mice. J. Cell. Biochem. 112: 694–703, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Molecular-genetic effects of cadmium chloride   总被引:1,自引:0,他引:1  
We studied the effect of cadmium chloride on: (1) the DNA of human cells; (2) the mutagenic effect of reproducing Kilham virus; (3) the synthesis of virus-induced interferon, and (4) the reproduction of oncogenic (mammalian leucosis) virus. Cadmium chloride caused degradation of DNA in human- and rat-embryo cells. Culture infected by the virus in the presence of cadmium sulphate had the highest yield of cells with chromosomal aberrations. Cadmium chloride caused marked inhibition of the virus-induced synthesis of interferon. The introduction of cadmium chloride into diploid cells infected by the leucosis virus caused a 3-4 fold increase in the yield of virus-induced transformation foci.  相似文献   

14.
Sinha M  Manna P  Sil PC 《BMB reports》2008,41(9):657-663
The present study was undertaken to investigate the protective role of taurine (2-aminoethanesulfonic acid) against cadmium (Cd) induced oxidative stress in murine erythrocytes. Cadmium chloride (CdCl(2)) was chosen as the source of Cd. Experimental animals were treated with either CdCl(2) alone or taurine, followed by Cd exposure. Cd intoxication reduced hemoglobin content and the intracellular Ferric Reducing/Antioxidant Power of erythrocytes, along with the activities of antioxidant enzymes, glutathione content, and total thiols. Conversely, intracellular Cd content, lipid peroxidation, protein carbonylation, and glutathione disulphides were significantly enhanced in these cells. Treatment with taurine before Cd intoxication prevented the toxin-induced oxidative impairments in the erythrocytes of the experimental animals. Overall, the results suggest that Cd could cause oxidative damage in murine erythrocytes and that taurine may play a protective role in reducing the toxic effects of this particular metal.  相似文献   

15.
The accumulation and depletion of cadmium in liver and kidney metallothionein (MT) and the effects of dietary zinc deficiency on cadmium metabolism were studied in rats. The accumulation of cadmium in liver MT started to plateau after 80 days, but there was a linear accumulation of this element in kidney MT over the entire 300-day experiment. Cadmium in MT fractions was depleted very slowly when rats were changed to a diet without cadmium. The accumulation of cadmium in MT also caused zinc to accumulate in this protein, even in rats fed zinc-deficient diets. However, the reverse situation was found not to be true; zinc did not cause cadmium to accumulate in MT. Dietary zinc deficiency limited the binding of injected109Cd to MT of liver, but not of kidneys or testes. However, zinc-deficient rats fed cadmium in their diets metabolized cadmium similarly to zinc-supplemented rats, suggesting that zinc deficiency does not limit the ability of cadmium to stimulate MT synthesis.  相似文献   

16.
Chen L  Zhou J  Gao W  Jiang YZ 《生理学报》2003,55(5):535-540
选择健康SD雄性成年大鼠36只,随机分成对照组(C组)、镉负荷中剂量组(M组)、镉负荷高剂量组(H组).将分析纯CdCl2·2.5H2O用生理盐水稀释成含镉0.4 mg/ml浓度的注射溶液,高压灭菌.M组和H组大鼠每天分别按含镉0.5和1.0 mg/kg体重腹腔注射染毒,C组用同样方法注射与H组同等剂量的生理盐水,进行急性镉负荷实验,连续观察7 d.研究急性镉负荷对大鼠血液及几种组织中一氧化氮(NO)自由基、肿瘤坏死因子-α(TNF-a)变化的影响及作用.结果显示在整个实验期内,镉负荷大鼠体重与对照组比较明显下降;睾丸、心脏和肝脏组织中的镉含量极显著上升,并随镉负荷剂量和时间而增加;血浆NO水平M组虽高于对照组,但差异不显著,而H组极显著高于对照组,M和H组血浆TNF-α明显高于对照组;在整个实验期内,镉负荷大鼠睾丸、心脏和肝脏组织匀浆中NO较对照组高或明显高于对照组,睾丸和心脏组织匀浆中TNF-a也均高于或明显高于对照组,但肝脏中的TNF-a三组间没有差异.结果提示,镉负荷诱发NO、TNF-α大量释放在导致大鼠多种器官机能活动障碍发生过程中可能起重要作用.  相似文献   

17.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05?mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

18.
Amelioration of cadmium-induced cardiac impairment by taurine   总被引:1,自引:0,他引:1  
The present study has been designed to investigate the protective role of taurine (2-aminoethanesulfonic acid), a sulfur containing conditionally essential amino acid, against cadmium-induced cardiac dysfunction in mice. Cadmium chloride (CdCl(2)) was used as the source of cadmium and it was administered orally at a dose of 4mg/kg body weight for 6 days. Cadmium exposure caused significant accumulation of the cadmium and iron in mice hearts tissue. Levels of serum specific markers related to cardiac impairments, e.g. total cholesterol, HDL cholesterol and triglyceride were altered due to cadmium toxicity. Reduction in the activities of antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) have been observed in cadmium exposed mice. Cadmium intoxication also decreased the cardiac glutathione (GSH) and total thiols contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products, protein carbonyl content and the extent of DNA fragmentation. Oral administration of taurine at a dose of 100mg/kg body weight for 5 days, however, prevented all the toxin-induced oxidative impairments mentioned above. "Ferric Reducing/Antioxidant Power (FRAP) assay" showed that taurine could protect the cardiac tissue by preventing cadmium-induced reduction of the intracellular antioxidant power. Histological examination of cardiac segments also supported the beneficial role of taurine against cadmium-induced damages in the murine hearts. Effect of a well established antioxidant, vitamin C has been included in the study as a positive control. Combining all, results suggest that taurine attenuates cadmium-induced impairment in mice hearts.  相似文献   

19.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05 mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

20.
Mice were given either cadmium (Cd), copper (Cu) or zinc (Zn) ad lib, and levels of the metals in the heart, kidneys and liver were measured together with organ contents of sodium (Na) and calcium (Ca). The contents of Cd increased more than 100-fold in all organs, whereas Zn increased by a factor of 2-4. Copper accumulated only in the liver. Cadmium exposure caused the Na and Ca contents in the kidneys to increase by a factor of 2-3, but caused a statistically significant reduction in the Na content of the liver. Cadmium also caused a reduction in the Ca content of the heart. Copper caused a statistically significant doubling of the Na content in the heart, but a significant reduction in the Ca content in this organ. Zinc caused a reduction in the Ca content of the heart. However, the mechanisms behind these effects are not clear. The accumulation of Cd in the kidneys and heart was associated with a gradual change in the Na and Ca levels in these organs, but trace metal accumulation was not associated with any conspicuous changes in the Na or Ca contents in any other organ. Copper was not accumulated in heart, but Cu intake still had marked effects on the Na and Ca contents in this organ. Since the tissue contents of Na and Ca are likely to be physiologically important, these ions may have potential as biomarkers for toxic stress. Since the effects of Cd and Cu differed markedly, the tissue contents of Na and Ca may also be used in a trace metal-specific system of fingerprint biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号