首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From several polyvinyl alcohol (PVA)-utilizing mixed cultures, two component bacterial strains essential for PVA utilization were isolated, and their properties and roles in PVA utilization were studied. Each pair of essential component strains consisted of a type I strain, which produced a PVA-degrading enzyme and constituted the predominant population of the mixed culture in PVA, and a type II strain, which produced a certain growth stimulant for the former strain. All of the type I strains were taxonomically identical and assigned as Pseudomonas sp. In contrast, type II strains were taxonomically different from each other, belonging to Pseudomonas spp. and Alcaligenes sp. PVA utilization occurred in each mixed culture of a type I strain with Pseudomonas putida VM15A as a substitute for the type II strain of the original pair and also in each mixed culture of a type II strain with Pseudomonas sp. VM15C. The growth rates of these substituted, mixed cultures differed from each other.  相似文献   

2.
Symbiotic Utilization of Polyvinyl Alcohol by Mixed Cultures   总被引:11,自引:8,他引:3       下载免费PDF全文
Polyvinyl alcohol (PVA)-utilizing cultures were obtained from various sources. They were mixed cultures even after cyclical transfer to liquid and plate media with PVA as a sole source of carbon. Component bacteria were isolated from the several mixed cultures, and it was shown that PVA was utilized symbiotically by two bacterial members which could not utilize PVA in each respective pure culture. From a mixed culture, strains VM15, VM15A (Pseudomonas putida) and VM15C (Pseudomonas sp.) were isolated as members essential for PVA utilization. VM15C was the predominant strain in the mixed-culture population and produced PVA-degrading enzyme. The culture supernatant of VM15A enabled VM15C to grow on PVA. VM15A was presumed to supply VM15C with a unique growth stimulant which was distinct from usual growth factors.  相似文献   

3.
Stable mixed continuous cultures of Pseudomonas sp. strain VM15C and Pseudomonas putida VM15A, the former of which produced a polyvinyl alcohol (PVA)-degrading enzyme and the latter of which produced an essential growth factor for PVA utilization by strain VM15C, were established with PVA as the sole source of carbon and energy with chemostat cultivation. A high extent of PVA degradation was achieved at dilution rates of less than 0.030/h. The predominant strain in the cultures was the primary metabolizer of PVA, strain VM15C. The growth supporter, strain VM15A, existed as a minor population, although its population was maintained at an almost constant level throughout a dilution region in which the VM15C population decreased markedly as the dilution rate was raised. A crude growth factor which was prepared from a culture supernatant of strain VM15A and increased the specific growth rate of strain VM15C with PVA in an axenic batch culture was also effective for enhancing the VM15C population and PVA degradation in the mixed continuous culture at a high dilution rate (0.064/h). This indicated that the growth-limiting substrate for strain VM15C in the mixed continuous culture is the growth factor produced by strain VM15A.  相似文献   

4.
In a mixed continuous culture of Pseudomonas putida VM15A and Pseudomonas sp. strain VM15C with polyvinyl alcohol (PVA) as the sole source of carbon, growth of the PVA-degrading bacterium VM15C and, hence, PVA degradation were limited by the growth factor, pyrroloquinoline quinone, produced by VM15A. Feeding of a carbon source for VM15A, ethanol, with PVA enhanced pyrroloquinoline quinone production and caused increases in the VM15C population and PVA degradation in a mixed continuous culture. There was an optimum range for PVA degradation of the ethanol concentration, although pyrroloquinoline quinone concentrations in continuous mixed cultures increased with increasing ethanol concentration.  相似文献   

5.
Abstract Polyvinyl alcohol (PVA) was utilized by a symbiotic mixed culture which was composed of Pseudomonas putida VM15A and Pseudomonas sp. VM14C. The PVA oxidase was found in the culture fluid, membrane, and cytosol fractions of VM15C. The membrane-bound PVA oxidase was purified by several steps of chromatography. The enzyme (p I = 9.6) exhibited the maximum activity at pH 8.0 to 8.4 and 45°C, and utilized secondary alcohol as well as PVA. The enzyme showed the PVA dehydrogenating activity linking with phenazine ethosulfate, indicating the possibility that PVA oxidation is coupled with an electron transport chain on the bacterial membrane.  相似文献   

6.
Production of polyvinly alcohol (PVA) oxidase by Pseudomonas sp. strain VM15C, a PVA degrader of a symbiotic PVA-utilizing mixed culture, was examined in various cultures. Despite the absence of PVA in the culture in nutrient broth, VM15C showed approximately the same productivity of PVA oxidase activity as that in the culture with PVA as the sole carbon source, whereas the productivity in the culture with glucose was lower than that of either the nutrient broth or the PVA culture. PVA oxidase activity produced in the nutrient broth culture was predominantly present in the cells, and most of the activity appeared to be in the cytoplasm. In contrast, in the culture with PVA as the sole carbon source, the activity was present in the culture fluid in a larger ratio than in the nutrient broth culture. Thus, production of PVA oxidase activity by this strain was constitutive and repressible, although localization of the produced activity was changed by growth conditions.  相似文献   

7.
An axenic culture of a polyvinyl alcohol (PVA)-degrading symbiont, Pseudomonas sp. strain VM15C, was established on PVA with a crude preparation of the growth factor (factor A) produced by the symbiotic partner Pseudomonas putida VM15A. An increase of factor A in the culture medium enhanced the cell-associated PVA oxidase activity as well as the growth rate, but decreased production of extracellular PVA oxidase. PVA oxidase in cells grown on PVA was present in the periplasmic space at a higher ratio than in cells grown on peptone. PVA degradation occurred rapidly with washed cells. PVA was also degraded by immobilized cells entrapped in agar gels.  相似文献   

8.
Seven Pseudomonas fulva strains obtained from culture collections were taxonomically studied. The seven strains were separated into three clusters (Clusters I to III) on the basis of 16S rRNA gene sequences, and located phylogenetically in the genus Pseudomonas sensu stricto. Further, the strains were classified into 4 groups (Groups I to IV) on the basis of DNA-DNA similarity. As a result, Cluster I was split into Groups I and II. Group I included the type strain of P. fulva and two strains, and levels of DNA-DNA similarity ranged from 88 to 100% among the strains. Group II contained two strains, and the level between the two strains ranged from 91 to 100%. Group III consisted of one strain. Group IV included one strain, and this strain showed a high level of DNA-DNA similarity with the type strain of Pseudomonas straminea NRIC 0164(T). Clusters II and III corresponded to Groups III and IV, respectively. The four groups were separated from one another and from related Pseudomonas species at the level from 3 to 45% of DNA-DNA similarity. The strains of Groups I, II, and III had ubiquinone 9 as the major quinone. According to numerical analysis by the use of 133 phenotypic characteristics, the seven P. fulva strains were split into four phenons (Phenons I to IV). The groups by DNA-DNA similarity corresponded well with the phenons produced by numerical taxonomy, and differential characteristics were recognized. Consequently, Group I was regarded as P. fulva because the type strain (NRIC 0180(T)) of this species was included in this group. Strains in Group II were identified as a new species, Pseudomonas parafulva sp. nov., and the type strain is AJ 2129 (=IFO 16636=JCM 11244=NRIC 0501). NRIC 0181 in Group III was identified as a new species, Pseudomonas cremoricolorata sp. nov., and the type strain is NRIC 0181 (=IFO 16634=JCM 11246). NRIC 0182 in Group IV was identified as P. straminea on the basis of the high level of DNA-DNA similarity with the type strain of this species.  相似文献   

9.
Degradation of chlorophenols by a defined mixed microbial community   总被引:1,自引:0,他引:1  
Synthetic sewage containing phenol, acetone, and alkanols plus 4-chlorophenol or a mixture of isomeric chlorophenols is completely degraded by a defined mixed culture with Pseudomonas sp. strain B13 as a chlorocatechol-dissimilating member of the community. Total degradation of the organic carbon was indicated by release of stoichiometric amounts of chloride and low content of dissolved organic carbon in the cell-free effluents. During adaptation to high loads of chlorophenols the initial meta-cleavage activity was completely replaced by ortho-cleavage activity of type I and II. In the fully acclimated culture, hybrid strains such as Alcaligenes sp. strain A7-2 were detected, which are more competitive than Pseudomonas sp. strain B13 with respect to chlorophenol degradation.  相似文献   

10.
Synthetic sewage containing phenol, acetone, and alkanols plus 4-chlorophenol or a mixture of isomeric chlorophenols is completely degraded by a defined mixed culture with Pseudomonas sp. strain B13 as a chlorocatechol-dissimilating member of the community. Total degradation of the organic carbon was indicated by release of stoichiometric amounts of chloride and low content of dissolved organic carbon in the cell-free effluents. During adaptation to high loads of chlorophenols the initial meta-cleavage activity was completely replaced by ortho-cleavage activity of type I and II. In the fully acclimated culture, hybrid strains such as Alcaligenes sp. strain A7-2 were detected, which are more competitive than Pseudomonas sp. strain B13 with respect to chlorophenol degradation.  相似文献   

11.
A polyvinyl alcohol (PVA) oxidase-deficient mutant of Pseudomonas sp. strain VM15C, strain ND1, was shown to possess PVA dehydrogenase, in which pyrroloquinoline quinone (PQQ) functions as a coenzyme. The mutant grew on PVA and required PQQ for utilization of PVA as an essential growth factor. Incubation of the membrane fraction of the mutant with PVA caused cytochrome reduction of the fraction. Furthermore, it was found that in spite of the presence of PVA oxidase, the membrane fraction of strain VM15C grown on glucose without PQQ required PQQ for cytochrome reduction during incubation with PVA. The results provide evidence that PVA dehydrogenase couples with the electron transport chain of PVA-degrading bacteria but that PVA oxidase does not.  相似文献   

12.
Enrichment experiments were carried out in continuous-flow units using a mineral medium with commercial linear alkylbenzenesulphonate (LAS) as the limiting carbon- and energy-source. The mixed bacterial culture originating from the waste water of a detergent plant consisted of five strains belonging to the genus Pseudomonas and two strains each of the genera Achromobacter and Acinetobacter. The cultivation conditions corresponding to dilution rates of 0.025-0.1 h-1 and LAS concentrations of 20–50 mg/1 were examined. During the experiments the composition of mixed cultures and the kinetics of LAS biodegradation were followed. Continuous-flow enrichment experiments resulted in the selection of six bacterial cultures with different compositions of individual species and capability to utilize LAS. From the original seven strains at lower dilution rates (0.025 and 0.05 h-1) six were selected, excluding Pseudomonas sp. 3, while at the highest dilution rate (0.1/h-1) five strains were selected after eliminating Pseudomonas sp. 5 and Achromobacter sp. 1. All enriched mixed cultures were more efficient in primary than in ultimate LAS degradation. Two of the culture strains were able to achieve primary LAS degradation ( Pseudomonas sp. 1 in mineral medium with LAS as the sole carbon- and energy-source and Acinetobacter sp. 3 in medium supplemented by yeast extract and nutrient broth).
None of the strains could degrade LAS completely, which indicates that many types of interactions based on combined metabolic attack as well as those based on provision of specific nutrients, may exist between culture members during the complete LAS bio-oxidation.  相似文献   

13.
Benzene, toluene, and p-xylene (BTX) were degraded by indigenous mixed cultures in sandy aquifer material and by two pure cultures isolated from the same site. Although BTX compounds have a similar chemical structure, the fate of individual BTX compounds differed when the compounds were fed to each pure culture and mixed culture aquifer slurries. The identification of substrate interactions aided the understanding of this behavior. Beneficial substrate interactions included enhanced degradation of benzene and p-xylene by the presence of toluene in Pseudomonas sp. strain CFS-215 incubations, as well as benzene-dependent degradation of toluene and p-xylene by Arthrobacter sp. strain HCB. Detrimental substrate interactions included retardation in benzene and toluene degradation by the presence of p-xylene in both aquifer slurries and Pseudomonas incubations. The catabolic diversity of microbes in the environment precludes generalizations about the capacity of individual BTX compounds to enhance or inhibit the degradation of other BTX compounds.  相似文献   

14.
Benzene, toluene, and p-xylene (BTX) were degraded by indigenous mixed cultures in sandy aquifer material and by two pure cultures isolated from the same site. Although BTX compounds have a similar chemical structure, the fate of individual BTX compounds differed when the compounds were fed to each pure culture and mixed culture aquifer slurries. The identification of substrate interactions aided the understanding of this behavior. Beneficial substrate interactions included enhanced degradation of benzene and p-xylene by the presence of toluene in Pseudomonas sp. strain CFS-215 incubations, as well as benzene-dependent degradation of toluene and p-xylene by Arthrobacter sp. strain HCB. Detrimental substrate interactions included retardation in benzene and toluene degradation by the presence of p-xylene in both aquifer slurries and Pseudomonas incubations. The catabolic diversity of microbes in the environment precludes generalizations about the capacity of individual BTX compounds to enhance or inhibit the degradation of other BTX compounds.  相似文献   

15.
Soluble (S-type) pyocins are Pseudomonas aeruginosa bacteriocins that kill nonimmune P. aeruginosa strains via a specific receptor. The genes coding for pyocin Sa (consisting of a killing protein and an immunity protein) were cloned and expressed in Escherichia coli. Sequence analysis revealed that Sa is identical to pyocin S2. Seventy-nine strains of P. aeruginosa were tested for their sensitivity to pyocins S1, S2, and S3, and their ferripyoverdine receptors were typed by multiplex PCR. No strain was found to be sensitive to both S2 and S3, suggesting that the receptors for these two pyocins cannot coexist in one strain. As expected, all S3-sensitive strains had the type II ferripyoverdine receptor fpvA gene, confirming our previous reports. S1 killed strains irrespective of the type of ferripyoverdine receptor they produced. All S2-sensitive strains had the type I fpvA gene, and the inactivation of type I fpvA in an S2-sensitive strain conferred resistance to the S2 pyocin. Accordingly, complementation with type I fpvA in trans restored sensitivity to S2. Some S2-resistant type I fpvA-positive strains were detected, the majority (all but five) of which had the S1-S2 immunity gene. Comparison of type I fpvA sequences from immunity gene-negative S2-sensitive and S2-resistant strains revealed only a valine-to-isoleucine substitution at position 46 of type I FpvA. However, both type I fpvA genes conferred the capacity for type I pyoverdine utilization and sensitivity to S2. When these two type I fpvA genes were introduced into strain 7NSK2 carrying mutations in type II fpvA (encoding the type II pyoverdine receptor) and fpvB (encoding the alternative type I receptor), growth in the presence of type I pyoverdine was observed and the strain became sensitive to S2. We also found that type I pyoverdine could signal type II pyoverdine production via the type I FpvA receptor in 7NSK2.  相似文献   

16.
A cellulose-degrading defined mixed culture (designated SF356) consisting of five bacterial strains (Clostridium straminisolvens CSK1, Clostridium sp. strain FG4, Pseudoxanthomonas sp. strain M1-3, Brevibacillus sp. strain M1-5, and Bordetella sp. strain M1-6) exhibited both functional and structural stability; namely, no change in cellulose-degrading efficiency was observed, and all members stably coexisted through 20 subcultures. In order to investigate the mechanisms responsible for the observed stability, "knockout communities" in which one of the members was eliminated from SF356 were constructed. The dynamics of the community structure and the cellulose degradation profiles of these mixed cultures were determined in order to evaluate the roles played by each eliminated member in situ and its impact on the other members of the community. Integration of each result gave the following estimates of the bacterial relationships. Synergistic relationships between an anaerobic cellulolytic bacterium (C. straminisolvens CSK1) and two strains of aerobic bacteria (Pseudoxanthomonas sp. strain M1-3 and Brevibacillus sp. strain M1-5) were observed; the aerobes introduced anaerobic conditions, and C. straminisolvens CSK1 supplied metabolites (acetate and glucose). In addition, there were negative relationships, such as the inhibition of cellulose degradation by producing excess amounts of acetic acid by Clostridium sp. strain FG4, and growth suppression of Bordetella sp. strain M1-6 by Brevibacillus sp. strain M1-5. The balance of the various types of relationships (both positive and negative) is thus considered to be essential for the stable coexistence of the members of this mixed culture.  相似文献   

17.
A unicellular manganese-oxidizing bacterium (strain L7), isolated from Lake Ladoga, is identified as "Siderocapsa" sp. according to its morphology. However, this bacterium belongs to the phylogenetic cluster of Pseudomonas putida. The physiological characteristics (utilization of sugars, polyatomic alcohols, organic acids, and phenolic substrates as carbon and energy sources) also indicate the similarity of strain L7 to representatives of the genus Pseudomonas. The growing culture oxidizes Mn(II); the rate of oxidation depends on the type of added organic substrate. Carbonate requirement for this process indicates mixotrophic metabolism. The relatedness of the isolated bacterium to the representatives of the genus Pseudonomas and their phenotypic similarity provide a basis for considering strain L7 not as "Siderocapsa" sp., but as a new species, Pseudomonas siderocapsa sp. nov., of the P. putida cluster.  相似文献   

18.
Eighteen rod-shaped homofermentatives, six heterofermentatives, and a coccal homofermentative lactic acid bacteria were isolated from fermented tea leaves (miang) produced in the northern part of Thailand. The isolates were placed in a monophyletic cluster consisting of Lactobacillus and Pediococcus species. They were divided into seven groups by phenotypic and chemotaxonomic characteristics, DNA-DNA similarity, and 16S rRNA gene sequences. Groups I to VI belonged to Lactobacillus and Group VII to Pediococcus. All of the strains tested produced DL-lactic acid but those in Group IV produced L-lactic acid. The strains tested in Groups I, II and V had meso-diaminopimelic acid in the cell wall. Six strains in Group I were identified as Lactobacillus pantheris; five strains in Group II as Lactobacillus pentosus; and four strains in Group V as Lactobacillus suebicus. Two strains in Group VI showed high DNA-DNA similarity for each other and MCH4-2 was closest to Lactobacillus fermentum CECT 562(T) with 99.5% of 16S rRNA gene sequence similarity. Five strains in Group III are proposed as Lactobacillus thailandensis sp. nov., and MCH5-2(T) (BCC 21235(T)=JCM 13996(T)=NRIC 0671(T)=PCU 272(T)) is the type strain which has 49 mol% G+C of DNA. Two strains in Group IV are proposed as Lactobacillus camelliae sp. nov., and the type strain is MCH3-1(T) (BCC 21233(T)=JCM 13995(T)=NRIC 0672(T)=PCU 273(T)) which has 51.9 mol% G+C of DNA. One strain in Group VII is proposed as Pediococcus siamensis sp. nov., and MCH3-2(T) (BCC 21234(T)=JCM 13997(T)=NRIC 0675(T)=PCU 274(T)) is the type strain which has 42 mol% G+C of DNA.  相似文献   

19.
A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction.  相似文献   

20.
A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号