首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TNF-alpha and lymphotoxin (LT or TNF-beta) are structurally related cytokines that share several proinflammatory and immunomodulatory activities. The shared biologic activities of TNF and LT have been attributed to their binding to a common cell surface receptor(s). We observed that rTNF enhanced the expression of MHC class I proteins on the human T cell hybridoma, II-23.D7, however LT was largely unable to regulate MHC expression. To determine the molecular basis of this disparity between LT and TNF the receptor binding characteristics of rTNF and rLT were investigated by direct and competitive radioligand assays on the II-23.D7 T hybridoma, and for comparison, anti-CD3 activated human T lymphocytes. Specific 125I-rTNF binding to the II-23.D7 line revealed a single class of sites with a Kd = 175 pM and 3000 sites/cell; anti-CD3 activated T cells exhibited specific TNF binding with similar properties. The relationship of receptor occupancy to the induction of MHC class I Ag yielded a hyperbolic curve indicating a complex relationship between rTNF binding and biologic response. LT appeared to function like a partial agonist in that rLT was 10- to 20-fold less effective than rTNF in competitively inhibiting 125I-rTNF binding on the II-23.D7 line. Scatchard type analysis revealed a single class of low affinity binding sites for 125I-rLT. No differences in the competitive binding activity of rTNF and rLT were observed on the anti-CD3-activated T cells. Receptors for rTNF and rLT were immunoprecipitated from the II-23.D7 and activated T cells with anticytokine antibodies after cross-linking of radioiodinated rTNF or rLT to intact cells by using chemical cross-linking reagents. Analysis of the cross-linked adducts by SDS-PAGE and autoradiography indicated a major adduct of 92 kDa for rTNF and 104 kDa for rLT. Enzymatic digestion with neuraminidase or V8 protease revealed a unique structure to these adducts consistent with the cross-linking of a single chain of cytokine to a cell surface glycoprotein. rTNF inhibited the formation of the 104-kDa adduct formed with 125I-rLT on the II-23.D7 line, indicating these two cytokines bind to the same receptor of approximately 80 kDa. These results suggest that the disparate activities of LT and TNF to induce MHC class I proteins on the II-23.D7 cells are, in part, associated with a modified state of a common receptor.  相似文献   

2.
We characterized the membrane-associated form of lymphotoxin (surface LT) on the activated II-23.D7 T cell hybridoma. Antibodies to rLT precipitated both surface LT and a distinct 33-kDa glycoprotein (p33). Because p33 and surface LT were antigenically unrelated, their coprecipitation suggested a physical association of p33 and surface LT on the membrane. Pulse-chase analysis indicated that LT and p33 associate with each other early in the LT biosynthetic pathway, precluding the possibility that LT is secreted and bound to p33 or a surface receptor. Furthermore, no p33 was associated with the secreted form of LT. Isoelectric focusing of surface LT and p33 under nondenaturing and denaturing conditions confirmed that surface LT and p33 existed as a complex. Treatment of cells with a high concentration of salt or with acid indicated that surface LT is a peripheral membrane protein. Although secreted LT is a homologous trimer, protein cross-linking studies revealed that surface LT existed as a monomer associated with a dimer of p33. Together the results demonstrate a novel mechanism for stable membrane expression of LT by activated T cells.  相似文献   

3.
The expression of membrane-associated forms of lymphotoxin (LT) and TNF were examined on cell lines of T, B, and myeloid origin, IL-2 dependent T cell clones, and peripheral blood lymphocytes. Inducible and constitutive patterns of surface LT expression were found on T cells as exemplified by the II-23.D7, a CD4+T cell hybridoma, and HUT-78, a T cell lymphoma. Phorbol ester induced surface LT expression on Ramos, an EBV transformed B cell line, but at a slower rate of appearance when compared to the II-23.D7. Secretion of LT was rapidly inducible by phorbol ester in II-23.D7 and also in HUT-78 but with slower kinetics; surface LT expression continued in both lines after secretion had ceased. Low levels of membrane TNF were transiently induced on II-23.D7 and HUT-78, but none was observed on Ramos. Peripheral blood monocytes and some myeloid tumor lines did not express surface LT. Several T cell clones expressed surface LT after Ag-specific stimulation, and expression persisted several days. Stimulation through the TCR or by IL-2 rapidly induced surface LT on resting peripheral T cells and CD56+ NK cells; pokeweed mitogen activation induced expression on CD20+ B cells. Consistent with previous results, immunoprecipitation with anti-LT mAb showed that LT was complexed with a distinct 33 kDa glycoprotein (p33) on cells that expressed surface LT, whereas secreted LT was not associated with p33. Surface and secreted modes of LT expression by activated T, B, and NK cells suggests that LT can be utilized as either a localized or diffusible mediator in immune responses.  相似文献   

4.
CD23, a 45-kDa type II membrane glycoprotein present on B cells, monocytes, and other human immune cells, is a low-affinity receptor for IgE. The extracellular region of the membrane-bound human CD23 is processed into at least four soluble (s) CD23 forms, with apparent molecular masses of 37, 33, 29, and 25 kDa. High levels of sCD23 are found in patients with allergy, certain autoimmune diseases, or chronic lymphocytic leukemia. Therefore, inhibition of the processing of membrane-bound CD23 to control the cytokine-like effects of sCD23 offers a novel therapeutic opportunity. While the 37-, 29-, and 25-kDa forms of sCD23 have been expressed previously as recombinant proteins, the 33-kDa form has not been purified and characterized. To further investigate the multiple roles of sCD23 fragments and to devise assays to identify potent small-molecule inhibitors of CD23 processing, we have produced the 33-kDa form of sCD23 using Chinese hamster ovary (CHO) and Drosophila S2 cells. The CHO-expressed 33-kDa protein was found to undergo proteolytic degradation during cell growth and during storage of purified protein, resulting in accumulation of a 25-kDa form. The Drosophila system expressed the 33-kDa sCD23 in a stable form that was purified and demonstrated to be more active than the CHO-derived 25-kDa form in a monocyte TNFalpha release assay.  相似文献   

5.
The adenosine deaminase-binding protein has previously been localized to the cell surface of human fibroblasts (Andy, R. J., and Kornfeld, R. (1982) J. Biol. Chem. 257, 7922-7925). In this study we examine the biosynthesis of binding protein in human fibroblasts, human hepatoma HepG2 cells, and a human kidney tumor cell line. Binding protein immunoprecipitated from radioiodinated detergent-extracted fibroblast membranes has a molecular weight of 120,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An additional band of Mr 100,000 is also present which we believe is a result of proteolysis of the 120,000 band. Purified soluble kidney binding protein has an Mr of 112,000. Binding protein from fibroblasts pulse-labeled with [35S]methionine for 15 min migrates as a 110-kDa band on sodium dodecyl sulfate-polyacrylamide gels. Within 30-60 min of chase, the intensity of the 110-kDa band is diminished, and a 120-kDa band has appeared. Binding protein reaches the cell surface of fibroblasts within 30-60 min of chase. The same results are obtained with the other cell lines studied. Thus, binding protein is initially synthesized as a precursor of 110 kDa which chases into a 120-kDa mature form. The shift of 10 kDa is probably due to processing of its oligosaccharide chains since soluble kidney-binding protein contains 7-9 complex N-linked chains. Upon endoglycosidase H treatment, the 110,000 precursor shifts to a Mr of 89,000 while the 120,000 mature band shifts to 115,000, consistent with the presence of 7-9 high mannose chains on the precursor and 1-2 high mannose chains on the mature form. These results and the presence of complex N-linked chains on binding protein were confirmed by lectin affinity chromatography of glycopeptides derived from [2-3H]mannose-labeled binding protein. Analysis of [6-3H]glucosamine-labeled binding protein indicates the presence of 1 sialic acid residue per chain.  相似文献   

6.
Tumor necrosis factor (TNF) is one of the mediators of inflammatory responses. Recently, the cDNA for two distinct receptors of TNF with predicted molecular masses of 60 kDa and 80 kDa, respectively, were isolated. In this report, we compare the inhibitory effects of these two forms of recombinant soluble TNF receptors (extracellular domains) on the ligand binding and on the antiproliferative effects of TNF and lymphotoxin (LT) in a human histiocytic lymphoma cell line (U-937). Our results show that the soluble form of the p60 receptor is approximately 100-fold more potent than the soluble form of the p80 receptor in inhibiting both the antiproliferative effects of TNF as well as in blocking TNF binding to U-937 cells. In contrast, the antiproliferative effects of LT and its binding to cells is inhibited equally by both the p60 and p80 forms of the soluble receptor. Thus, overall our results indicate that the two soluble receptors differ in their ability to inhibit TNF and LT. The impotance of these soluble receptors in blocking the harmful effects of TNF and LT is discussed.  相似文献   

7.
The hydrolysis of triglycerides in plasma lipoproteins is mediated by lipoprotein lipase (LPL) that is bound to vascular endothelial cells. The specific endothelial cell surface protein(s) with which LPL associates has not been characterized. To identify this LPL binding protein(s), radioiodinated cell surface proteins from cultured bovine aortic endothelial cells were chromatographed using bovine LPL-Sepharose. A single radioiodinated protein of apparent molecular mass 220 kDa was specifically retained by the gel and eluted with 0.4 M NaCl. A LPL-binding protein of similar size was obtained after metabolic labeling of the cellular proteoglycans with 35SO4, indicating that the 220-kDa protein is a proteoglycan. After heparitinase or nitrous acid treatments the molecular mass of the LPL-binding protein decreased to approximately 50 kDa, suggesting that it contains heparin sulfate chains. A 220-kDa protein from the basal cell surface was also identified using LPL-Sepharose chromatography. 125I-LPL was cross-linked to the endothelial cell surface using ethylene glycobis (succinimidylsuccinate). A single ligand-receptor complex, approximately 350 kDa, was obtained. Heparin and unlabeled LPL decreased the cross-linking of radioiodinated LPL to the cell surface receptor. To examine whether the receptor mediates the internalization of cross-linked 125I-LPL, cells containing 125I-LPL complexed to the surface were incubated at either 37 or at 4 degrees C. The amount of 125I-LPL internalized by the cells was 74% greater at 37 degrees C than at 4 degrees C. This suggested that LPL cross-linked to the receptor was internalized in a temperature-dependent manner. Thus, a 220-kDa heparan sulfate proteoglycan functions as an endothelial cell surface receptor for LPL.  相似文献   

8.
The gp195 from Camp strain parasites was characterized with eight monoclonal antibodies (MAb) that recognize different epitopes on gp195 and three of its merozoite-associated processed products. Four MAb (3H7, 3B10, 7F1, and 4G12) reacted with different epitopes on the 45-kDa glycosylated product (gp45), shown by differences in their reactivities with soluble and immunoblotted gp45. One MAb (7H10) reacted with a conformational epitope probably formed as a result of the interaction of gp45 with a nonglycosylated 45-kDa product (p45). Three other MAb (3D3, 7B11, and 7B2) reacted with different epitopes on a nonglycosylated 83-kDa product (p83), shown by differences in their reactivities against various parasite isolates in immunofluorescent antibody assays. Immunoprecipitation of antigens that were pulse-labeled with [3H]isoleucine and chased with cold isoleucine showed that p45 and gp45 were processed products of gp195 and p83 was sequentially processed into smaller fragments of 73 and 67 kDa (p73 and p67). Immunoblots showed that the 7B11 and 7B2 epitopes were present on p83, p73, and p67, but that the 3D3 epitope was present only on p83 and p73. A two-site immunoassay showed the 3D3 epitope to be repetitive. The 3D3 and 7B11 epitopes were serotype restricted (present in seven and 24 of 33 isolates, respectively), but the other five epitopes were common to all isolates tested. The gp195 and its processed products have Mr that are consistent with the Mr of a number of antigens shown previously to be associated with the immune complexes that are formed when merozoites are agglutinated by antibodies contained in some growth inhibitory immune sera.  相似文献   

9.
The resistance of target cells to the cytolytic action of lymphotoxin (LT) and recombinant tumor necrosis factor (rTNF) has been investigated by using clonally derived cell lines with defined gap junction-mediated, intercellular communication properties. Gap junction-competent Chinese hamster ovary cells are normally insensitive to the action of LT/TNF. However, treatment with 12-o-tetradecanoylphorbol-13-acetate, which promotes the loss of gap junctions, or culturing at low cell density to reduce intercellular contacts, significantly increased their sensitivity to LT/TNF. The LT/TNF-sensitive murine CL-1D and L929 cell lines, which in normal culture conditions are unable to form gap junctions, were not changed in their susceptibility to LT/TNF after treatment with phorbol ester or low culture density. However, the formation of gap junctions by CL-1D can be promoted by treatment with 8-bromo-cyclic adenosine monophosphate (1 mM), and this treatment completely suppressed the ability of LT and rTNF to kill CL-1D. Additionally, the LA25-normal rat kidney cell line, which is infected with a temperature-sensitive mutant of Rous sarcoma virus (LA25), is gap junction-competent and resistant to the effects of LT at the restrictive temperature (39 degrees C). However, when shifted to the permissive temperature (33 degrees C), LA25-normal rat kidney cells express the pp60v-src viral gene product, lose their ability to form gap junctions, and become sensitive to the lytic activity of LT. The results demonstrate that the expression of the retroviral pp60v-src, a tyrosine protein kinase, is sufficient to render cells susceptible to the lytic effects of LT and rTNF. Collectively, these experiments demonstrate a strong correlation between the resistance of target cells to the action of LT/TNF and their ability to cooperate metabolically through gap junctions. The results do not completely exclude the possibility that other mechanisms, such as LT receptor modulation, are also occurring under these experimental conditions. These data also suggest that a possible physiologic function of the stable cytotoxic lymphokines is to induce cytolysis/cytostasis of cells that have lost gap junctional contact, such as those in the process of mitosis or metastasis that have separated from the main tissue mass.  相似文献   

10.
Lymphotoxin (LT) was purified from serum-free conditioned media of a recombinant mammalian cell line transfected with human lymphotoxin cDNA. The purification scheme consisted of controlled pore glass chromatography, Q-Sepharose ion-exchange chromatography, and concanavalin A-Sepharose chromatography. The purified protein was found to be homogeneous by reverse-phase high-performance liquid chromatography and had an approximate specific activity of 130 X 10(6) units per milligram protein as determined by the L-929 cytotoxicity assay. Purified LT had an isoelectric point of approximately 6.85 and an apparent molecular weight of 50,000 by gel permeation high-pressure liquid chromatography. However, when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two distinct bands at approximate molecular sizes of 25 and 20 kDa were observed. Both the bands were immunoreactive by Western blot analysis and found to be associated with biological activity. The two forms of lymphotoxin differed from each other with respect to protein structure. Amino-terminal amino acid sequence analysis revealed that the 25-kDa LT sequence starts with Leu-Pro-Gly-residues whereas that of the 20-kDa LT begins with His-Leu-Ala; thus the latter form is truncated by 20 amino acid residues from the amino terminal. Two species of LT also differed from each other with respect to carbohydrate structure. Enzymatic removal of sialic acid reduced the molecular weight of 25 kDa by approximately 5 kDa whereas that of the 20-kDa LT was unchanged. A reduction in an apparent molecular size by approximately 4 kDa of both species of LT was observed on removal of N-linked oligosaccharides. Treatment with O-Glycanase had minimal effect on either form of LT. The recombinant lymphotoxin described here was found superior in its solubility behavior as compared to bacterial cell derived LT. Overall, mammalian cell line derived recombinant LT appears closer in its properties to natural LT than does bacterial cell derived recombinant LT.  相似文献   

11.
The molecular nature of the structural changes on the T cell-CD6 glycoprotein upon cell activation has been investigated. Cell surface 125I labeling and immunoprecipitation studies from PBMC revealed that after stimulation by different activators of protein kinase C, or after exposure to either human or FCS, the anti-CD6 mAb precipitated an additional protein of 130 kDa, together with the 105-kDa protein present in resting cells. Cell surface expression of this 130-kDa CD6 protein form could be detected as early as 15 min after PKC activation, without requiring de novo protein synthesis. Pulse and chase activation experiments of radioiodinated cells suggested that the 130-kDa molecule is the result of a posttranslational modification of the 105-kDa protein and that this conversion is a reversible process. Studies of 32P-cell labeling and immunoprecipitation by anti-CD6 mAb revealed that only the 130-kDa form was phosphorylated, whereas the 105-kDa protein was unphosphorylated both in resting and activated cells. Moreover, the removal of phosphate groups from the 130-kDa CD6-form by enzymatic treatment with alkaline phosphatase resulted in its conversion to the 105-kDa form. Taken together, these results demonstrate the existence of two CD6 molecular forms that are in a dynamic equilibrium and differ only at their degree of phosphorylation: a 105-kDa unphosphorylated form present in resting T cells that changes very rapidly to a 130-kDa phosphorylated form by exposure of cells either to serum or to activators of PKC.  相似文献   

12.
Lyme borreliosis is an infectious disease caused by the tick-borne spirochete Borrelia burgdorferi, which carries the potential for chronic infection. Ag on the etiologic Borrelia are currently being defined structurally and their ability to elicit immune responses delineated. EBV can be used to immortalize human B. burgdorferi-specific B cells from infected donors and generate antibodies against antigenic epitopes encountered in natural infection. A human mAb secreting EBV-transformed B cell line, D7, has been developed that is specific for a 93-kDa B. burgdorferi protein and has been used to characterize this potentially important Ag. D7 produces an IgG3 antibody that detects the 93-kDa Ag as well as smaller fragments at 46 kDa and lower molecular mass. The antibody detects similar epitopes on all B. burgdorferi isolates tested and on a Borrelia hermsii protein with molecular mass greater than 100 kDa but binds poorly to Treponema species. In contrast, polyclonal sera from Lyme disease patients show little binding to the homologous Ag in B. hermsii. Structurally, the 93-kDa protein is associated with the flagellum and may be firmly anchored in the protoplasmic cylinder. It is not solubilized by nonionic detergent treatment of the whole Borrelia. Antibodies against a comparable m.w. protein are present in sera from patients with both early and late infection. Thus, antibodies against this Ag are a sensitive and specific marker of Borrelia infection. This Ag is likely of structural importance and may represent a target of host defenses.  相似文献   

13.
Biosynthesis of the human IFN gamma receptor was studied using metabolic labeling techniques and immunoprecipitation with receptor-specific monoclonal antibodies. Colo-205 and HepG2 cells labeled with [35S]methionine gave rise to two components with molecular mass 75 and 90 kDa following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. No bands were detected when immunoprecipitation was performed using irrelevant monoclonal IgG or in the presence of excess ligand, a condition known to block antibody-receptor interaction. When Colo-205 were labeled for increasing periods of time, the 75-kDa form was detected after 5 min, whereas the 90-kDa form appeared only after 60 min. Pulse-chase analysis established that the 75-kDa form was the precursor of the 90-kDa component. Only the 90-kDa form was detected on extrinsically radioiodinated Colo-205 cell surfaces. This observation was confirmed by Western blot analysis of isolated Colo-205 membranes. Digestion of labeled precipitates with peptide:N-glycosidase F caused a 22% reduction in the apparent molecular weight of the IFN gamma receptor. Receptor derived from tunicamycin-treated Colo-205 labeled for 5 min displayed a single molecular mass of 65 kDa and expressed ligand binding activity. Longer labeling periods in the presence of tunicamycin revealed the appearance of a second ligand-binding form of 70 kDa. Thus, Colo-205 IFN gamma receptors carry asparagine (N)-linked oligosaccharides and possibly some other form of post-translational modification.  相似文献   

14.
An interferon-induced 15-kDa protein is synthesized from a precursor of higher molecular weight; the precursor contains 165 amino acids (17 kDa), whereas the stable product (15 kDa) contains 156 amino acids. The stable 15-kDa form is derived from the precursor 17-kDa form by the removal of eight amino acids from the COOH terminus and the methionine from the NH2 terminus. The existence of the precursor 17-kDa protein can be demonstrated after brief periods of in vivo labeling with [35S]methionine and by translation of mRNA in vitro.  相似文献   

15.
Transport and metabolism of 5'-nucleotidase in a rat hepatoma cell line   总被引:3,自引:0,他引:3  
The biosynthesis of the ectoenzyme 5'-nucleotidase in the rat hepatoma cell line H4S has been studied by pulse-labeling with [35S]methionine and subsequent immunoprecipitation of the cell lysate. 5'-Nucleotidase is a membrane glycoprotein with an apparent molecular mass on SDS-gels of 72 kDa. The enzyme is initially synthesized as a 68-kDa precursor which is converted to the mature 72-kDa form in 15-60 min (t1/2 = 25 min). The molecular mass of the unglycosylated enzyme is approximately 58 kDa. Culturing the cells in the presence of varying concentrations of tunicamycin, an inhibitor of N-glycosylation, revealed six species of 5'-nucleotidase after sodium dodecyl sulfate/polyacrylamide electrophoresis. This indicates the presence of five N-linked oligosaccharide chains accounting for the difference between the 58-kDa polypeptide backbone and the 68-kDa species. The 68-kDa precursor is susceptible to cleavage by endo-beta-N-acetylglycosaminidase H; the 72-kDa mature protein is converted to several bands upon this treatment. This result indicates that part of 5'-nucleotidase keeps one or two high-mannose or hybrid chains in the mature form, even after prolonged pulse-chase labeling. The newly synthesized mature enzyme reaches the cell surface after 20-30 min. The half-life of 5'-nucleotidase is about 30 h in H4S cells. No immunoprecipitable 5'-nucleosidase is released into the culture medium.  相似文献   

16.
Heat-shock response in Legionella pneumophila   总被引:10,自引:0,他引:10  
The heat-shock response of Legionella pneumophila was examined by radiolabelling bacterial cell proteins with [35S]methionine following a temperature shift from 30 to 42 degrees C. Five heat-shock proteins were identified as having molecular masses of 17, 60, 70, 78, and 85 kilodaltons (kDa). The 85- and 60-kDa proteins were equally distributed between supernatant and pellet fractions following ultracentrifugation at 100,000 x g, the 70- and 78-kDa proteins were found primarily in the supernatant, and the 17-kDa protein was found primarily in the pellet. Synthesis of subsets of the heat-shock proteins could be stimulated by novobiocin, patulin, or puromycin. Ethanol, an effector of the heat-shock response in other microorganisms, had little effect on L. pneumophila, even at the highest concentration tolerated by the bacterial cells (1.9%). Finally, the 60-kDa heat-shock protein of L. pneumophila was immunologically cross-reactive with a polyclonal antibody prepared to the Escherichia coli groEL protein. However, a mouse monoclonal antibody reactive with the 60-kDa protein of all legionellae tested did not cross-react with the E. coli groEL protein, suggesting that the Legionella 60-kDa protein contains common and unique epitopes.  相似文献   

17.
Biosynthesis and processing of the mannose receptor in human macrophages   总被引:4,自引:0,他引:4  
The biosynthesis and processing of the human mannose receptor has been studied in monocyte-derived macrophages. Adherent cells were labeled for 60 min with Trans35S (a mixture of 35S-labeled methionine and cysteine), chased, and subjected to immunoprecipitation by antibody raised against the human placental receptor. The antibody immunoprecipitated a single protein of molecular mass 162 kDa; precipitation of the labeled receptor could be inhibited by placental receptor. The results presented demonstrate that the receptor is synthesized as a 154-kDa precursor which is processed to 162 kDa in 90 min. The precursor is a glycoprotein bearing endoglycosidase H-sensitive oligosaccharides; the 162-kDa form is endoglycosidase H-resistant but peptide:N-glycanase-sensitive. Desialylation of the mannose receptor with neuraminidase generates a protein which is recognized by peanut agglutinin, a lectin that specifically binds desialylated O-linked oligosaccharides. Thus, the human macrophage mannose receptor bears both N- and O-linked oligosaccharide chains. Newly synthesized mannose receptor exhibits a half-life of 33 h as determined by pulse-chase studies. This indicates that on the average, each molecule of receptor recycles between the cell surface and endosomes hundreds of times before degradation.  相似文献   

18.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
A cDNA clone for the preprotein of spinach ferredoxin:NADP+ reductase has been modified to allow the expression in Escherichia coli of the mature flavoprotein form the lacks the transit peptide. An expression vector, pFNR1, was constructed by subcloning the fragment into the plasmid pDS12/RBSII, SphI. In the crude extracts of transformed cells after induction, two active holoproteins of 35 kDa and 32 kDa, respectively, were found. The 32-kDa protein, purified by immunoaffinity chromatography, was found to lack the first 28 residues of the spinach protein sequence and to have a methionine as the N-terminal residue instead of Val29. A new expression plasmid, pFNR2, was obtained by in vitro mutagenesis of the codon GTG for Val29 to the synonymous GTT; in this case, only the 35-kDa protein was expressed by transformed cells. Both the 35-kDa and 32-kDa enzymes were purified and characterized. All the properties analyzed of the cloned 35-kDa enzyme were very similar to those of the spinach flavoprotein. The 32-kDa form showed the same catalytic efficiency of the spinach enzyme as a diaphorase but its interaction with oxidized ferredoxin was partially impaired.  相似文献   

20.
Previous studies have shown that at least three vaccinia virus (VV) late proteins (with apparent molecular asses of 37, 35, and 25 kDa) label with myristic acid. Time course labeling of VV-infected cells with [3H]myristic acid reveals at least three additional putative myristylproteins, with apparent molecular masses of 92, 17, and 14 kDa. The 25-kDa protein has previously been identified as that encoded by the L1R open reading frame, leaving the identities of the remaining proteins to be determined. Sequence analysis led to the preliminary identification of the 37-, 35-, and 17-kDa proteins as G9R, A16L, and E7R, respectively. Using synthetic oligonucleotides and PCR techniques, each of these open reading frames was amplified by using VV DNA as a template and then cloned individually into expression vectors behind T7 promoters. These plasmid constructs were then transcribed in vitro, and the resulting mRNAs were translated in wheat germ extracts and radiolabeled with either [35S]methionine or [3H]myristic acid. Each wild-type polypeptide was labeled with [35S]methionine or [3H]myristic acid in the translation reactions, while mutants containing an alanine in place of glycine at the N terminus were labeled only with [35S]methionine, not with myristic acid. This result provided strong evidence that the open reading frames had been correctly identified and that each protein is myristylated on a glycine residue adjacent to the initiating methionine. Subcellular fractionations of VV-infected cells suggested that A16L and E7R are soluble, in contrast to L1R, which is a membrane-associated protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号