首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the direct determination of 18-hydroxycorticosterone (18OHB) in human saliva has been developed and validated. Saliva was collected at 30 min and 1 h intervals between 0600 and 2200 h from healthy men and women for the determination of 18OHB (SHB), aldosterone (SA) and glucocorticoids (SGC = cortisol + cortisone). SHB was highly correlated with SA (r = 0.75; P less than 0.001) but even more highly with SGC (r = 0.89; P greater than 0.001). Multiple regression analysis confirmed that SGC was a more important determinant of SHB than was SA. Though the concentrations of 18OHB and aldosterone were highly correlated there was considerable variation in the 18OHB:aldosterone ratio during the period of saliva collection. This ratio tended to be highest in the morning and lowest in the evening and was weakly correlated with SGC level (r = 0.62; P less than 0.01). The 18OHB:aldosterone ratio in saliva approximates to, and is highly correlated with, that in plasma. We suggest that the fluctuations in SHB:SA ratio correspond to the relative rates of secretion of 18OHB and aldosterone and that this ratio is modulated either by ACTH or by cortisol. Whether this indicates that 18OHB is a by-product of glucocorticoid as well as aldosterone metabolism, or whether this implies a separate physiological role for the steroid remains to be clarified.  相似文献   

2.
Serum immunoreactive erythropoietin (siEp) was estimated in samples collected from members of two scientific and mountaineering expeditions, to Mount Kongur in Western China and to Mount Everest in Nepal. SiEp was increased above sea-level control values 1 and 2 days after arrival at 3,500 m and remained high on ascent to 4,500 m. Thereafter, while subjects remained at or above 4,500 m, siEp declined, and by 22 days after the ascent to 4,500 m was at control values but increased on ascent to higher altitude. Thus siEp was at a normal level during the maintenance of secondary polycythemia from high-altitude exposure. On descent, with removal of altitude hypoxia, siEp decreased, but despite secondary polycythemia levels remained measurable and in the range found in subjects normally resident at sea level. On Mount Everest, siEp was significantly (P less than 0.01) elevated above preexpedition sea-level controls after 2-4 wk at or above 6,300 m. There was no correlation between estimates of siEp and plasma renin activity in samples collected before and during both expeditions.  相似文献   

3.
Differences between the effects of training at sea level and at simulated altitude on performance and muscle structural and biochemical properties were investigated in 8 competitive cyclists who trained for 3-4 weeks, 4-5 sessions/week, each session consisting of cycling for 60-90 min continuously and 45-60 min intermittently. Four subjects, the altitude group (AG), trained in a hypobaric chamber (574 torr = 2300 m above sea level), and the other four at sea level (SLG). Before and after training work capacity was tested both at simulated altitude (574 torr) and at sea level, by an incremental cycle ergometer test until exhaustion. Work capacity was expressed as total amount of work performed. Venous blood samples were taken during the tests. Leg muscle biopsies were taken at rest before and after the training period. AG exhibited an increase of 33% in both sea level and altitude performance, while SLG increased 22% at sea level and 14% at altitude. Blood lactate concentration at a given submaximal load at altitude was significantly more reduced by training in AG than SLG. Muscle phosphofructokinase (PFK) activity decreased with training in AG but increased in SLG. All AG subjects showed increases in capillary density. In conclusion, work capacity at altitude was increased more by training at altitude than at sea level. Work capacity at sea level was at least as much improved by altitude as by sea level training. The improved work capacity by training at altitude was paralleled by decreased exercise blood lactate concentration, increased capillarization and decreased glycolytic capacity in leg muscle.  相似文献   

4.
The simulation effects of mountain climbing exercise training on plasma testosterone, cortisol and luteinizing hormone (LH) levels were examined in ten recreational mountain male climbers. Subjects underwent a simulating mountain climbing exercise training 3 times a week for a total of eight weeks before an expedition to Mount Muztag Ata (7546 m, Xingian, China). During training, each subject carried a 40 kg back pack while walking on a treadmill at a speed of 1.9 mph for 60 min at sea level. Subjects completed an incremental treadmill test to exhaustion prior to training, after training, and one week after returning from Mount Muztag Ata. Blood samples were collected from antecubital vein at rest and at 5, 60, and 120 min post testing to determine the plasma testosterone, cortisol and LH levels. The basal plasma testosterone and cortisol concentrations were lower in both post-training and after-climbing conditions compared with that in the pre-training condition (p<0.01). The basal plasma LH concentration was remained unchanged after training and after the mountain climbing compared with levels measured in the pre-training phase. No correlation could be established between plasma LH and testosterone level. These results suggest that an eight-week period of mountain climbing training protocol may be beneficial in maintaining normal endocrine function during and after high altitude mountain expedition. Our results also indicate the decrease of plasma testosterone was LH independent.  相似文献   

5.
The possibility that hypoxia might inhibit the secretion of angiotension-converting enzyme (ACE) would explain the low concentrations of aldosterone reported in humans at high altitude. To observe the effect of such a reduction in ACE concentration on the plasma aldosterone concentration (PAC) four subjects performed mild exercise throughout a 2-h study so as to elevate their plasma renin activity (PRA). After the first 60 min breathing air they were switched to breathing 12.8% O2 (4,000 an altitude equivalent). Venous samples were taken at intervals for hormone analysis. Results showed the expected rise of PRA and PAC both tending toward a plateau after about 45 min. There was no significant change in ACE activity (F = 0.065). Hypoxia produced a further 50% rise in PRA but a fall in PAC and a 30% reduction in ACE activity. Angiotensin I concentrations closely followed PRA throughout (r = 0.984). These results indicate that during exercise acute hypoxia changes the usual close relationship between PAC and PRA by reducing ACE activity.  相似文献   

6.
After acclimatization to high altitude, maximal exercise cardiac output (QT) is reduced. Possible contributing factors include 1) blood volume depletion, 2) increased blood viscosity, 3) myocardial hypoxia, 4) altered autonomic nervous system (ANS) function affecting maximal heart rate (HR), and 5) reduced flow demand from reduced muscle work capability. We tested the role of the ANS reduction of HR in this phenomenon in five normal subjects by separately blocking the sympathetic and parasympathetic arms of the ANS during maximal exercise after 2-wk acclimatization at 3,800 m to alter maximal HR. We used intravenous doses of 8.0 mg of propranolol and 0.8 mg of glycopyrrolate, respectively. At altitude, peak HR was 170 +/- 6 beats/min, reduced from 186 +/- 3 beats/min (P = 0.012) at sea level. Propranolol further reduced peak HR to 139 +/- 2 beats/min (P = 0.001), whereas glycopyrrolate increased peak HR to sea level values, 184 +/- 3 beats/min, confirming adequate dosing with each drug. In contrast, peak O(2) consumption, work rate, and QT were similar at altitude under all drug treatments [peak QT = 16.2 +/- 1.2 (control), 15.5 +/- 1.3 (propranolol), and 16.2 +/- 1.1 l/min (glycopyrrolate)]. All QT results at altitude were lower than those at sea level (20.0 +/- 1.8 l/min in air). Therefore, this study suggests that, whereas the ANS may affect HR at altitude, peak QT is unaffected by ANS blockade. We conclude that the effect of altered ANS function on HR is not the cause of the reduced maximal QT at altitude.  相似文献   

7.
The thermoregulatory responses to 10 degrees C (for 3 h) were investigated in 1) 12 natives from sea level (lowlanders) at 150 m, and on arrival at 3,350 and 4,340 m; 2) 6 of these during a 6-wk sojourn at 4,360 m, and on return to sea level; and 3) 5 natives from each of the two altitudes (highlanders) in their respective habitat, and after descent to 150 m. The cold-induced increase in the rate of O2 consumption (Vo2) of the lowlanders was significantly smaller at both altitudes than at sea level. It did not recover substantially during the 6 wk at altitude, but was restored to its initial rate on return to sea level. By contrast, visible shivering activity was augmented on arrival at altitude. It persisted throughout the 6 wk there, but was greatly depressed on return to sea level, despite the increased Vo2. Mean skin temperatures (Tsk) stabilized in the cold at significantly higher values at altitude. Rectal temperature (Tre) decreased similarly at all altitudes. Vo2 of the highlanders in the cold was significantly greater at sea level than at their resident altitudes, although shivering activity was less intense; Tsk stabilized at significantly lower levels at 150 m than at either altitude. These results indicate that altitude exposure reduces the calorigenic response of man to cold, and that this effect is not moderated by acclimatization to altitude, yet is reversible immediately on descent to sea level. The component of cold thermogenesis which appeared to be reduced by altitude exposure was nonshivering thermogenesis rather than visible shivering.  相似文献   

8.
The aim of this study was to ascertain the effects of training at altitude (1750 m. PB = 630mmHg) and at sea level (10m, PB = 760mmHg) as well as that of a period of adaptation of originally sea level-trained rats at altitude on endurance capacity. The average run time to exhaustion was 185.3 +/- 3.7 min for rats trained at altitude in comparison with 150.0 +/- 10.3 min for sea level-trained rats. After 14 days of adaptation at altitude, no significant difference in running time to exhaustion between rats trained at altitude (189.0 +/- 16.4 min) and those trained at sea level (177.2 +/- 11.6 min) was apparent. The improved endurance capacity of rats trained at altitude (when tested at altitude) is probably attributable to an increased respiratory capacity as is evident from the significantly increased levels of the citric acid cycle marker enzyme, citrate synthase (citrate oxaloacetate-lyase, EC 4.1.3.7) in the liver and gastrocnemius muscle of rats trained at altitude as compared to those trained at sea level.  相似文献   

9.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

10.
We hypothesized that the increased exercise arterial lactate concentration on arrival at high altitude and the subsequent decrease with acclimatization were caused by changes in blood lactate flux. Seven healthy men [age 23 +/- 2 (SE) yr, wt 72.2 +/- 1.6 kg] on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-2D]glucose (Brooks et al. J. Appl. Physiol. 70:919-927, 1991) and [3-13C]lactate and rested for a minimum of 90 min followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 consumption (VO2peak; 65 +/- 2% of both acute altitude and acclimatization). During rest at sea level, lactate appearance rate (Ra) was 0.52 +/- 0.03 mg.kg-1.min-1; this increased sixfold during exercise to 3.24 +/- 0.19 mg.kg-1.min-1. On acute exposure, resting lactate Ra rose from sea level values to 2.2 +/- 0.2 mg.kg-1.min-1. During exercise on acute exposure, lactate Ra rose to 18.6 +/- 2.9 mg.kg-1.min-1. Resting lactate Ra after acclimatization (1.77 +/- 0.25 mg.kg-1.min-1) was intermediate between sea level and acute exposure values. During exercise after acclimatization, lactate Ra (9.2 +/- 0.7 mg.kg-1.min-1) rose from resting values but was intermediate between sea level and acute exposure values. The increased exercise arterial lactate concentration response on arrival at high altitude and subsequent decrease with acclimatization are due to changes in blood lactate appearance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Acclimatization to moderate high altitude accompanied by training at low altitude (living high-training low) has been shown to improve sea level endurance performance in accomplished, but not elite, runners. Whether elite athletes, who may be closer to the maximal structural and functional adaptive capacity of the respiratory (i.e., oxygen transport from environment to mitochondria) system, may achieve similar performance gains is unclear. To answer this question, we studied 14 elite men and 8 elite women before and after 27 days of living at 2,500 m while performing high-intensity training at 1,250 m. The altitude sojourn began 1 wk after the USA Track and Field National Championships, when the athletes were close to their season's fitness peak. Sea level 3,000-m time trial performance was significantly improved by 1.1% (95% confidence limits 0.3-1.9%). One-third of the athletes achieved personal best times for the distance after the altitude training camp. The improvement in running performance was accompanied by a 3% improvement in maximal oxygen uptake (72.1 +/- 1.5 to 74.4 +/- 1.5 ml x kg(-1) x min(-1)). Circulating erythropoietin levels were near double initial sea level values 20 h after ascent (8.5 +/- 0.5 to 16.2 +/- 1.0 IU/ml). Soluble transferrin receptor levels were significantly elevated on the 19th day at altitude, confirming a stimulation of erythropoiesis (2.1 +/- 0.7 to 2.5 +/- 0.6 microg/ml). Hb concentration measured at sea level increased 1 g/dl over the course of the camp (13.3 +/- 0.2 to 14.3 +/- 0.2 g/dl). We conclude that 4 wk of acclimatization to moderate altitude, accompanied by high-intensity training at low altitude, improves sea level endurance performance even in elite runners. Both the mechanism and magnitude of the effect appear similar to that observed in less accomplished runners, even for athletes who may have achieved near maximal oxygen transport capacity for humans.  相似文献   

12.
Interleukin-6 (IL-6), an important cytokine involved in a number of biological processes, is consistently elevated during periods of stress. The mechanisms responsible for the induction of IL-6 under these conditions remain uncertain. This study examined the effect of alpha-adrenergic blockade on the IL-6 response to acute and chronic high-altitude exposure in women both at rest and during exercise. Sixteen healthy, eumenorrheic women (aged 23.2 +/- 1.4 yr) participated in the study. Subjects received either alpha-adrenergic blockade (prazosin, 3 mg/day) or a placebo in a double-blinded, randomized fashion. Subjects participated in submaximal exercise tests at sea level and on days 1 and 12 at altitude (4,300 m). Resting plasma and 24-h urine samples were collected throughout the duration of the study. At sea level, no differences were found at rest for plasma IL-6 between groups (1.5 +/- 0.2 and 1.2 +/- 0.3 pg/ml for placebo and blocked groups, respectively). On acute ascent to altitude, IL-6 levels increased significantly in both groups compared with sea-level values (57 and 84% for placebo and blocked groups, respectively). After 12 days of acclimatization, IL-6 levels remained elevated for placebo subjects; however, they returned to sea-level values in the blocked group. alpha-Adrenergic blockade significantly lowered the IL-6 response to exercise both at sea level (46%) and at altitude (42%) compared with placebo. A significant correlation (P = 0.004) between resting IL-6 and urinary norepinephrine excretion rates was found over the course of time while at altitude. In conclusion, the results indicate a role for alpha-adrenergic regulation of the IL-6 response to the stress of both short-term moderate-intensity exercise and hypoxia.  相似文献   

13.
This study examined the effects of acclimatization to 4,300 m altitude on changes in plasma ammonia concentrations with 30 min of submaximal [75% maximal O2 uptake (VO2max)] cycle exercise. Human test subjects were divided into a sedentary (n = 6) and active group (n = 5). Maximal uptake (VO2max) was determined at sea level and at high altitude (HA; 4,300 m) after acute (t less than 24 h) and chronic (t = 13 days) exposure. The VO2max of both groups decreased 32% with acute HA when compared with sea level. In the sedentary group, VO2max decreased an additional 16% after 13 days of continuous residence at 4,300 m, whereas VO2max in the active group showed no further change. In both sedentary and active subjects, plasma ammonia concentrations were increased (P less than 0.05) over resting levels immediately after submaximal exercise at sea level as well as during acute HA exposure. With chronic HA exposure, the active group showed no increase in plasma ammonia immediately after submaximal exercise, whereas the postexercise ammonia in the sedentary group was elevated but to a lesser extent than at sea level or with acute HA exposure. Thus postexercise plasma ammonia concentration was decreased with altitude acclimatization when compared with ammonia concentrations following exercise performed at the same relative intensity at sea level or acute HA. This decrease in ammonia accumulation may contribute to enhanced endurance performance and altered substrate utilization with exercise following acclimatization to altitude.  相似文献   

14.
Several studies have described high correlation of salivary and blood lactate level during exercise. Measuring the effectiveness and intensity of training, lactate concentration in blood, and lately in saliva are used.The aim of our study was to evaluate the correlation between the concentration and timing of salivary and blood lactate level in endurance athletes and non-athletes after a maximal treadmill test, and to identify physiological and biochemical factors affecting these lactate levels.Sixteen volunteers (8 athletes and 8 non-athletes) performed maximal intensity (Astrand) treadmill test. Anthropometric characteristics, body composition and physiological parameters (heart rate, RR-variability) were measured in both studied groups. Blood and whole saliva samples were collected before and 1, 4, 8, 12, 15, 20 min after the exercise test. Lactate level changes were monitored in the two groups and two lactate peaks were registered at different timeperiods in athletes. We found significant correlation between several measured parameters (salivary lactate - total body water, salivary lactate - RR-variability, maximal salivary lactate - maximal heart rate during exercise, salivary- and blood lactate -1 min after exercise test). Stronger correlation was noted between salivary lactate and blood lactate in athletes, than in controls.  相似文献   

15.
Ge RL  Wood H  Yang HH  Liu YN  Wang XJ  Babb T 《生理学报》2010,62(6):541-546
Weight loss is frequently observed after acute exposure to high altitude. However, the magnitude and rate of weight loss during acute exposure to high altitude has not been clarified in a controlled prospective study. The present study was performed to evaluate weight loss at high altitude. A group of 120 male subjects [aged (32±6) years] who worked on the construction of the Golmud-Lhasa Railway at Kunlun Mountain (altitude of 4 678 m) served as volunteer subjects for this study. Eighty-five workers normally resided at sea level (sea level group) and 35 normally resided at an altitude of 2 200 m (moderate altitude group). Body weight, body mass index (BMI), and waist circumference were measured in all subjects after a 7-day stay at Golmud (altitude of 2 800 m, baseline measurements). Measurements were repeated after 33-day working on Kunlun Mountain. In order to examine the daily rate of weight loss at high altitude, body weight was measured in 20 subjects from the sea level group (sea level subset group) each morning before breakfast for 33 d at Kunlun Mountain. According to guidelines established by the Lake Louise acute mountain sickness (AMS) consensus report, each subject completed an AMS self-report questionnaire two days after arriving at Kunlun Mountain. After 33-day stay at an altitude of 4 678 m, the average weight loss for the sea level group was 10.4% (range 6.5% to 29%), while the average for the moderate altitude group was 2.2% (-2% to 9.1%). The degree of weight loss (Δ weight loss) after a 33-day stay at an altitude of 4 678 m was significantly correlated with baseline body weight in the sea level group (r=0.677, P<0.01), while the correlation was absent in the moderate altitude group (r=0.296, P>0.05). In the sea level subset group, a significant weight loss was observed within 20 d, but the weight remained stable thereafter. AMS-score at high altitude was significantly higher in the sea level group (4.69±2.48) than that in the moderate altitude group (2.97±1.38), and was significantly correlated with baseline body weight. These results indicate that (1) the person with higher body weight during stay at high altitude loses more weight, and this is more pronounced in sea level natives when compared with that in moderate altitude natives; (2) heavier individuals are more likely to develop AMS than leaner individuals during exposure to high-altitude hypoxia.  相似文献   

16.
Hormonal responses to graded exercise of eight low altitude residents were examined at sea level (SL) and after 1 (acute) and 11 (chronic) days at 4,300 m (HA). Caloric, water, and electrolyte intakes were controlled, as were temperature and humidity. Blood was sampled at rest and during light and moderate upright bicycle exercise (20 min at 40% and 75% of maximal O2 uptake, respectively). Mean VO2 max at HA was 27% lower than at SL. Resting plasma levels of aldosterone (Aldo), renin, and angiotensin II (A II) were significantly lower (P smaller than 0.05) on day 1 at HA compared to SL, but returned to SL values by day 11. Plasma cortisol values at rest were similar at SL and HA and were not significantly altered by light or moderate exercise. Renin, A II, and Aldo rose progressively with increasing workload in each environment. With acute HA, renin and Aldo were lower than at either SL or chronic HA. The chronic HA levels tended to approximate SL findings, implying adaptation. The data suggest that aldosterone is predominantly under the control of the renin-angiotensin system during graded exercise at sea level and that the response of this system is altered on acute high-altitude exposure.  相似文献   

17.
Diurnal fluctuation in saliva aldosterone concentration   总被引:1,自引:0,他引:1  
We have measured saliva aldosterone concentration (SA) at frequent intervals in subjects going about their normal daytime activities. Four hourly sampling sufficed to give a reasonable estimate of mean diurnal SA but hourly sampling is necessary if it is desired to study the temporal pattern of SA. In subjects with normal or elevated mean levels, SA fluctuated considerably suggestive of several distinct episodes of aldosterone secretion. Such fluctuations show little correlation with the concentrations in saliva of glucocorticoids (cortisol + cortisone) nor are they consistent with a circadian rhythm of aldosterone secretion. We suggest that they may represent responses to such stimuli as eating, drinking or physical activity, and possibly to other as yet unidentified factors. These observations show the importance of comprehensive diurnal assessment of aldosterone level in physiological and pathological investigations. Because of its non-invasive nature and the high productivity of the assay, measurement of SA is ideally suited for this purpose.  相似文献   

18.
A decrease in maximal O2 uptake has been demonstrated with increasing altitude. However, direct measurements of individual links in the O2 transport chain at extreme altitude have not been obtained previously. In this study we examined eight healthy males, aged 21-31 yr, at rest and during steady-state exercise at sea level and the following inspired O2 pressures (PIO2): 80, 63, 49, and 43 Torr, during a 40-day simulated ascent of Mt. Everest. The subjects exercised on a cycle ergometer, and heart rate was recorded by an electrocardiograph; ventilation, O2 uptake, and CO2 output were measured by open circuit. Arterial and mixed venous blood samples were collected from indwelling radial or brachial and pulmonary arterial catheters for analysis of blood gases, O2 saturation and content, and lactate. As PIO2 decreased, maximal O2 uptake decreased from 3.98 +/- 0.20 l/min at sea level to 1.17 +/- 0.08 l/min at PIO2 43 Torr. This was associated with profound hypoxemia and hypocapnia; at 60 W of exercise at PIO2 43 Torr, arterial PO2 = 28 +/- 1 Torr and PCO2 = 11 +/- 1 Torr, with a marked reduction in mixed venous PO2 [14.8 +/- 1 (SE) Torr]. Considering the major factors responsible for transfer of O2 from the atmosphere to the tissues, the most important adaptations occurred in ventilation where a fourfold increase in alveolar ventilation was observed. Diffusion from alveolus to end-capillary blood was unchanged with altitude. The mass circulatory transport of O2 to the tissue capillaries was also unaffected by altitude except at PIO2 43 Torr where cardiac output was increased for a given O2 uptake. Diffusion from the capillary to the tissue mitochondria, reflected by mixed venous PO2, was also increased with altitude. With increasing altitude, blood lactate was progressively reduced at maximal exercise, whereas at any absolute and relative submaximal work load, blood lactate was higher. These findings suggest that although glycogenolysis may be accentuated at low work loads, it may not be maximally activated at exhaustion.  相似文献   

19.
In six healthy male volunteers at sea level (PB 747-759 Torr), we measured pH and PCO2 in cerebrospinal fluid (CSF), and in arterial and jugular bulb blood; from these data we estimated PCO2 (12) and pH for the intracranial portion of CSF. The measurements were repeated after 5 days in a hypobaric chamber (PB 447 Torr). Both lumbar and intracranial CSF were significantly more alkaline at simulated altitude than at sea level. Decrease in [HCO3-] IN lumbar CSF at altitude was similar to that in blood plasma. Both at sea level and at high altitude, PCO2 measured in the lumbar CSF was higher than that estimated for the intracranial CSF. At altitude, hyperoxia, in comparison with breathing room air, resulted in an increase in intracranial PCO2, and a decrease in the estimated pH in intracranial CSF. With hyperoxia at altitude, alveolar ventilation was significantly higher than during sea-level hyperoxia or normoxia, confirming that a degree of acclimatization had occurred. Changes in cerebral arteriovenous differences in CO2, measured in three subjects, suggest that cerebral blood flow may have been elevated after 5 days at altitude.  相似文献   

20.
For several years, it has been possible to determine renin by a direct RIA. In the present study, plasma active renin concentration (PRC) was related to plasma renin activity (PRA) and aldosterone as a function of a standardized posture test. Using PRC, our target was to define the shortest necessary test duration. The three parameters were examined in 10 healthy male subjects (22-34 years old). Salt balance was determined in 24-hour urine, and plasma potassium and sodium were measured. Volunteers were hospitalized for 1 night, and at 8 a.m. the next morning they were subjected to the following postural changes: 3 h active orthostasis and 3 h recumbency. Frequent blood samples were taken. Orthostasis induced a significant rise in PRC, PRA and aldosterone already after 15 min. PRC and PRA reached a maximum level after 90 min of orthostasis and remained relatively stable, while aldosterone reached its highest level already after 30 min and then gradually decreased. Significant correlations were found between PRA and PRC (p < 0.001), between PRC and aldosterone (p < 0.001), and between PRA and aldosterone (p < 0.001). The PRC/PRA ratio changed during the course of the test, especially in supine subjects. When subjects returned to the supine position, all the parameters measured began a continual decrease. There were no significant changes in serum potassium and sodium levels throughout the duration of the test.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号