首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
The possibility of using recombinant human lactoferrin from rice (rhLF) makes it necessary to study its differences from the protein of milk. In this work, the binding of different iron-saturated forms of rhLF to Caco-2 cells was studied. Iron-saturated rhLF bound in higher proportion than the apo-form, but, the data obtained for specific binding were not compatible with receptor-mediated binding. Competition assays showed the same binding capacity for human milk lactoferrin as for rhLF to Caco-2 cells. Another basic protein of milk, lactoperoxidase, was found to compete with rhLF for binding to Caco-2 cell membranes, suggesting an electrostatic interaction. The transport of iron (59Fe) bound to rhLF and to citrate and the transport of rhLF (125I-labeled) were studied on Caco-2 monolayers. Transport of iron was found to be significantly greater when bound to citrate than to rhLF. The amount of intact lactoferrin that traversed the Caco-2 monolayers was very low, suggesting degradation of it across these cells.  相似文献   

2.
We have compared the growth rates and cadmium binding capacity of wild-type and transgenic Chlamydomonas reinhardtii cells expressing a foreign class-II metallothionein. We observed that cells expressing metallothionein grew to significantly higher cell densities than wild-type cells in the presence of a toxic cadmium concentration (40 μM). When grown at a low (5 μM) cadmium concentration, cells expressing metallothionein bound twofold more cadmium (0.43 μg Cd)mg Ch1) than wild-type. At cadmium concentrations (40 μM), which induce phytochelatin synthesis in wild-type cells the cadmium binding capacity of both wild-type (79.6 μg Cd)mg Ch1) and transformed cells (86.4 μg Cd)mg Ch1) was similar; however, the transformed cells grew to higher densities than the wild type. These results suggest that under conditions that apparently induce phytochelatin expression, the presence of metallothionein in the cytoplasm reduces heavy metal toxicity. Furthermore, because cells expressing metallothionein grow to higher densities than wild-type cells at a toxic cadmium concentration (40 μM), the transgenic cells sequester more total cadmium (9% of total Cd) from the medium than the wild type (5.5% of total Cd). These results indicate that the trace-metal binding properties of Chlamydomonas can be enhanced through the expression of trace-metal-specific binding proteins.  相似文献   

3.
The mechanisms of intestinal absorption have not been clearly elucidated for cadmium, a toxic metal. In this work, we show the implication of distinct proteins in cadmium transport, and the transport step where these proteins are involved. We first validated the HT-29 model by evaluating nontoxic doses of cadmium (ranging from 1 to 20 μmol/L), and by quantifying metal uptake and transepithelial transport. The time-course of 1 μmol/L cadmium uptake at pH 7.5 showed three steps: a rapid one during the first 4 min, probably due to cadmium binding to the membrane; a slower one, characterized by K m of 1.65±0.54 μmol/L and V max of 3.9±0.3 pmol/min per mg protein; and a third, corresponding to slow accumulation that was not equilibrated even after 48 h of cadmium exposure. Intracellular metallothionein content following 1 or 5 μmol/L cadmium exposure showed a significant increase after 6 h of exposure, and was not equilibrated even after 72 h, allowing cadmium accumulation. After 24 h of exposure, metallothionein content was 5-fold, 14-fold, 26-fold, and 50-fold, respectively, for cells grown in the presence of 1, 5, 10, and 20 μmol/L cadmium, compared to control cells. The second step of uptake, characterized by carrier-mediated transport, was markedly increased at pH 5.5, compared to pH 7.5, and strongly inhibited by the metabolic inhibitor dinitrophenol. Moreover Nramp2 transporter cDNA was present in HT-29 cells. These data suggest the involvement of a proton-coupled transporter, which may be the divalent cation transporter Nramp2 (natural resistance-associated macrophage protein 2). Cadmium uptake was also inhibited by copper, zinc, and para-chloromercuribenzenesulfonate (pCMBS), but not by verapamil or ouabain. Taken together, our results indicate that cadmium could enter HT-29 cell by Nramp2 proton-coupled active transport and by diffusion, and accumulates in the cell as long as it binds to metallothionein. Cadmium toxicity could depend partly on the activity of Nramp2, and partly on metallothionein content. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A study was carried out on the uptake of copper, zinc, or cadmium ions and their induction of metallothionein synthesis in Menkes' and normal lymphoblastoid cells. The main difference between Menkes' and normal cells in the uptake of these metal ions was an increased uptake of copper ions in Menkes' cells at a low concentration of CuCl2 (2.1 microM). The CuCl2 concentration necessary to induce metallothionein synthesis in Menkes' cells was 50 microM, whereas that in normal cells was about 200 microM. The levels of zinc or cadmium ions needed to induce metallothionein in Menkes' cells were similar to those in normal cells. At least four isomers of metallothionein were induced by copper, zinc, and cadmium ions in both types of cells. Metallothionein synthesis in Menkes' and normal cells was induced when the amounts of intracellular copper reached a threshold level of approximately 0.2 nmol/10(6) cells, and the rate of metallothionein synthesis in these cells was increased as a function of the amounts of intracellular copper (0.2-1.7 nmol/10(6) cells). These results indicate that the induction of metallothionein synthesis in lymphoblastoid cells is controlled by the level of intracellular copper, suggesting that the major defect in Menkes' cells is not due to the abnormal regulation of metallothionein synthesis but to an alteration of the copper metabolism in cells by which the levels of intracellular copper become larger than those in normal cells and just lower than the threshold level for induction of metallothionein synthesis.  相似文献   

5.
To determine the relationship between cellular uptake of cadmium and content of metallothionein, we measured uptake of 109Cd in cells that differed in content of metallothionein (MT). MT cells were derived from NIH/3T3 cells by transfection with a plasmid containing the genome of bovine papilloma virus and the mouse metallothionein-I gene, driven by the promotor for the glucose-regulated protein of 78 kDa. Control cells were similarly transfected with bovine papilloma virus-based plasmids with the gene for metallothionein inverted and thus separated from the promoter (TM), or deleted, along with the promoter (BPA). The number of copies of bovine papilloma virus-based plasmids was similar in MT, TM, and BPA cells, approximately 100 per cell. MT cells were more than 10 times more resistant to the lethal effect of cadmium than were the control cells. Synthesis of metallothionein was 15-fold greater in the MT cells than in the TM or BPA cells. The uptake of 109Cd by the cells enriched in metallothionein was 4-fold less than by the control cells. These data suggest that an increased content of metallothionein may protect some cells from the toxic effects of cadmium, in part, by diminishing uptake of the metal.  相似文献   

6.
The effects of some new chelating agents on the cadmium burden of CHO cells in culture were investigated. The chelators were sodium-N-(4-methoxybenzyl)-D-glucamine-dithiocarbamate (MeOBG-DTC), sodium-N-benzyl-D-glucaminedithiocarbamate (BG-DTC) and di-isopropylmeso-2,3-dimercapto succinate (DiP-DMSA). The results were compared with the effect of the well known dimercaptopropanol (BAL).The derivates of dithiocarbamate are much less toxic than DiP-DMSA and BAL. All chelators effectively prevent Cd uptake into the cells. Mobilization of intracellular Cd, however, is more effective by the DTC-derivatives than by DiP-DMSA or BAL. Within the cell the major fraction of Cd after 48 hours incubation is found in the nuclei and cytosol and very little in the peroxisomes. The chelating agents remove the metal mostly from nuclei and cytosol. Incubation of the cells with cadmium leads to the induction of a Cd binding protein of an apparent molecular weight of 12500 Da, presumably metallothionein. MeOBG-DTC is more effective in removing the metal from this protein than BG-DTC.Abbreviations MeOBG-DTC Na-N(4-methoxybenzyl)-D-glucaminedithiocarbamate - BG-DTC Na-N-benzyl-D-glucaminedithiocarbamate - DiP-DMSA di-isopropyl-2,3-dimercaptosuccinate - BAL 2,3-dimercaptopropane-1-o1 - Da dalton - MEM minimum essential medium - IU international units - FBS fetal bovine serum - CD unbroken cells and debris - N nuclei - ML mitochondria, and lysosomes - P peroxisomes - HMW high molecular weight - MT metallothionein  相似文献   

7.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

8.
The beta domain of mouse metallothionein 1 (betaMT) was synthesized in Escherichia coli cells grown in the presence of copper or cadmium. Homogenous preparations of Cu-betaMT and Cd-betaMT were used to characterize the corresponding in vivo-conformed metal-clusters, and to compare them with the species obtained in vitro by metal replacement to a canonical Zn3-betaMT structure. The copper-containing betaMT clusters formed inside the cells were very stable. In contrast, the nascent beta peptide, although it showed cadmium binding ability, produced a highly unstable species, whose stoichiometry depended upon culture conditions. The absence of betaMT protein in E. coli protease-proficient hosts grown in cadmium-supplemented medium pointed to drastic proteolysis of a poorly folded beta peptide, somehow enhanced by the presence of cadmium. Possible functional and evolutionary implications of the bioactivity of mammalian betaMT in the presence of monovalent and divalent metal ions are discussed.  相似文献   

9.
Cadmium accumulation by a Citrobacter sp   总被引:4,自引:0,他引:4  
Cadmium accumulation by a Citrobacter sp. growing in the presence of the metal occurred as a sharp peak during the mid-exponential phase of growth, but cultures showed considerable inhibition of growth compared to cadmium-free controls. This problem was overcome by pregrowing the cells in cadmium-free medium and subsequently exposing them to the metal in the resting state, under which conditions higher concentrations of cadmium were tolerated and metal uptake was enhanced. This ability was retained when the cells were immobilized and then challenged with a flow containing Cd2+; 65% of the metal presented was removed from solution. The influence on uptake of the composition of the exposure buffer and of various cell treatments were investigated and the results are discussed with respect to the anticipated speciation of the cadmium presented to the cells and also with respect to the probable mechanism of metal uptake. This is thought to occur through the activity of a cell-bound phosphatase, induced during pre-growth by the provision of glycerol 2-phosphate as sole phosphorus source. Continued enzyme function in resting cells would then precipitate the metal as cell-bound cadmium phosphate.  相似文献   

10.
11.
The promoter from the metallothionein gene may be a useful conditional promoter for the construction of chimeric genes to be expressed in Drosophila cells in culture. To explore this possibility the responses of the endogenous metallothionein gene and an in vitro constructed chimeric gene containing the metallothionein promoter were examined. Copper and cadmium, when added to the growth medium of Drosophila Schneider's line 2 cells, can produce a 30-100 fold induction of metallothionein mRNA levels. The level of induction depends on the amount of copper or cadmium added to the medium and these mRNA levels remain high for at least four days. Copper is less toxic than cadmium and does not induce a typical heat-shock response in the cells. Finally, a chimeric gene containing the metallothionein promoter shows a similar induction when transformed into the cells.  相似文献   

12.
The time course of cadmium-metallothionein synthesis was studied in non-parenchymal and parenchymal cells, isolated by a cell-separation technique from the livers of rats after the simultaneous injection of CdCl2 (0.05 mg of Cd/kg) and a 10-fold molar excess of 2,3-dimercaptopropanol. Under these conditions of dosing, in contrast with the injection of CdCl2 alone, both cell types accumulate similar concentrations of Cd and synthesize equivalent concentrations of metallothionein. It is concluded that both cell types have a similar capacity to synthesize the metalloprotein, and that the limiting factor under normal cadmium exposure is the relatively inefficient metal uptake into the non-parenchymal cells.  相似文献   

13.
Flavonoids are natural compounds found in food items of plant origin. The study examined systematically the interaction of structurally diverse dietary flavonoids with trace metal ions and the potential impact of dietary flavonoids on the function of intestinal cells. Spectrum analysis was first performed to determine flavonoid-metal interaction in the buffer. Among the flavonoids tested, genistein, biochanin-A, naringin, and naringenin did not interact with any metal ions tested. Members of the flavonol family, quercetin, rutin, kaempferol, flavanol, and catechin, were found to interact with Cu(II) and Fe(III). On prolonged exposure, quercetin also interacted with Mn(II). Quercetin at 1:1 ratio to Cu(II) completely blocked the Cu-dependent color formation from hematoxylin. When quercetin was added to the growth medium of cultured human intestinal cells, Caco-2, the level of metal binding antioxidant protein, metallothionein, decreased. The effect of quercetin on metallothionein was dose and time-dependent. Genistein and biochanin A, on the contrary, increased the level of metallothionein. The interaction between dietary flavonoids and trace minerals and the effect of flavonoids on metallothionein level imply that flavonoids may affect metal homeostasis and cellular oxidative status in a structure-specific fashion.  相似文献   

14.
Primary cultures of adult rat liver parenchylmal cells, isolated by the collagenase perfusion technique and maintained as a monolayer,l were used to investigate the characteristics of hepatic cadmium accumulation and metabolism. Cadmium accumulation was found to be temperature- and concentration-dependent process that required sulfhydryl groups and was significantly stimulated by the addition of dexamethasome to the medium. Once taken up, cadmium was less available for exit-exchange processes than its biologically required congener, zinc. Moreover, cadmium influx enhanced zinc efflux. While most of the intracellular cadmium was located in the cytosol, its distribution within this fraction was altered with time. Initially the metal was bound to both high molecular weight species (>50 000) and metallothionein. As the incubation period increased, the cytosol concentration of cdmium and the percentage of this metal associated with metallothionein was likewise increased. [3H]Amino acid incorporation studies indicated that the accumulation of cadmium resulted in de novo synthesis of the 1 and 2 forms of metallothionein.  相似文献   

15.
Effect of DMT1 knockdown on iron,cadmium, and lead uptake in Caco-2 cells   总被引:12,自引:0,他引:12  
DMT1 (divalent metal transporter 1) is ahydrogen-coupled divalent metal transporter with a substrate preferencefor iron, although the protein when expressed in frog oocytestransports a broad range of metals, including the toxic metals cadmiumand lead. Wild-type Caco-2 cells displayed saturable transport of leadand iron that was stimulated by acid. Cadmium and manganese inhibitedtransport of iron, but zinc and lead did not. The involvement of DMT1in the transport of toxic metals was examined by establishing clonalDMT1 knockdown and control Caco-2 cell lines. Knockdown cell linesdisplayed much lower levels of DMT1 mRNA and a smaller Vmax for iron uptake compared with control celllines. One clone was further characterized and found to display an~50% reduction in uptake of iron across a pH range from 5.5 to 7.4. Uptake for cadmium also decreased 50% across the same pH range, butuptake for lead did not. These results show that DMT1 is important in iron and cadmium transport in Caco-2 cells but that lead enters thesecells through an independent hydrogen-driven mechanism.

  相似文献   

16.
The copper complex of 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) or CuKTS is reduced and dissociated upon reaction with Ehrlich cells. Titration of the cells with the complex leads to the specific binding of copper to metallothionein with 1 to 1 displacement of its complement of zinc. Under conditions of complete titration of metallothionein, 1.25-2.5 nmol CuKTS/10(7) cells, cellular DNA synthesis is rapidly inhibited but no long term effects on cell proliferation are observed. The kinetics of redistribution of Cu and Zn in Ehrlich cells in culture and in animals were studied after pulse reaction of CuKTS with cells. After exposure of cells to the noncytotoxic concentration of 2.5 nmol of CuKTS/10(7) cells, nonmetallothionein bound copper is lost rapidly from the cells, after which copper in metallothionein decays. New zinc metallothionein is made as soon as exposed cells are placed in culture. New synthesis stops when the level of zinc in metallothionein reaches control levels. A second pulse treatment of cells with CuKTS to displace zinc from metallothionein again stimulates new synthesis of the protein to restore its normal concentration. The kinetics of metal metabolism in Ehrlich cells exposed to 5.5 nmol of CuKTS/10(7) cells, which inhibits cell proliferation, are qualitatively similar except there is a pronounced lag before new zinc metallothionein is synthesized. The Ehrlich ascites tumor in mice responds to CuKTS similarly to cells in culture. It is also shown that cultured Ehrlich cells do not make extra zinc metallothionein in the presence of high levels of ZnCl2, and fail to accumulate copper in the presence of large concentrations of CuCl2.  相似文献   

17.
The expression of a synthetic rainbow trout metallothionein gene in E. coli   总被引:1,自引:0,他引:1  
A synthetic gene for rainbow trout metallothionein was constructed and inserted into a dual origin plasmid where expression was induced by a temperature shift in a proteinase-deficient strain of Escherichia coli. The recombinant protein was purified to homogeneity, and a partial amino acid sequence was determined to confirm its identity. Its immunochemical characteristics were similar to those of native metallothionein from rainbow trout. The amounts of recombinant metallothionein produced were quantified in soluble cell extracts by ELISA. Low concentrations were detected when growth was performed either in L-broth or defined (GMM-II) medium. Supplementation of the medium with zinc or copper had no effect on the amount of metallothionein produced. By contrast, when cadmium was included in either L-broth or GMM-II medium, much higher concentrations of the protein within the cells (approx. 13 micrograms/mg soluble cell protein) were detected. This stabilisation of the protein by metal reconstitution in vivo is considered in relation to the selective uptake/exclusion of metals by the cells and its significance for the scavenging of certain precious or toxic heavy metals is discussed.  相似文献   

18.
The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 μmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 μmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 μmol Cd/l exposure, and no variation was observed with copper.  相似文献   

19.
Translocation of bacteria, primarily Gram-negative pathogenic flora, from the intestinal lumen into the circulatory system leads to sepsis. In newborns, and especially very low birth weight infants, sepsis is a major cause of morbidity and mortality. The results of recently conducted clinical trials suggest that lactoferrin, an iron-binding protein that is abundant in mammalian colostrum and milk, may be an effective agent in preventing sepsis in newborns. However, despite numerous basic studies on lactoferrin, very little is known about how metal saturation of this protein affects a host’s health. Therefore, the main objective of this study was to elucidate how iron-depleted, iron-saturated, and manganese-saturated forms of lactoferrin regulate intestinal barrier function via interactions with epithelial cells and macrophages. For these studies, a human intestinal epithelial cell line, Caco-2, was used. In this model, none of the tested lactoferrin forms induced higher levels of apoptosis or necrosis. There was also no change in the production of tight junction proteins regardless of lactoferrin metal saturation status. None of the tested forms induced a pro-inflammatory response in Caco-2 cells or in macrophages either. However, the various lactoferrin forms did effectively inhibit the pro-inflammatory response in macrophages that were activated with lipopolysaccharide with the most potent effect observed for apolactoferrin. Lactoferrin that was not bound to its cognate receptor was able to bind and neutralize lipopolysaccharide. Lactoferrin was also able to neutralize microbial-derived antigens, thereby potentially reducing their pro-inflammatory effect. Therefore, we hypothesize that lactoferrin supplementation is a relevant strategy for preventing sepsis.  相似文献   

20.
It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km 7.73 × 10−6 M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10 kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500 Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号