首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isoenzymes, hexosaminidases A (alpha beta) and B (beta beta). The alpha- and beta-subunits are encoded by the HEXA and HEXB genes, respectively. Extensive homology in both the gene structures and deduced primary sequences demonstrate their common evolutionary origin. Defects in the alpha- or beta-subunits lead to Tay-Sachs of Sandhoff disease, respectively. The B1 variant of Tay-Sachs disease is characterized by an unusual phenotype. Patient samples contain both isoenzymes; however, hexosaminidase A lacks activity toward alpha-specific substrates. In a previous report, we analyzed the biochemical consequences of an Arg178----His substitution in the alpha-subunit, causing the B1 phenotype, by in vitro mutagenesis of the homologous codon for Arg211 in the beta-subunit to produce His. We found that the substitution did not affect dimer formation or cellular targeting but caused a near total loss of activity toward a common alpha- and/or beta-substrate. Additional effects were also noted that suggested a perturbation had occurred to the protein's secondary structure. In this report, we investigate further the role of Arg in the catalysis of hexosaminidase substrates. The introduction of more or less conservative amino acid substitutions at the beta-Arg211 site were evaluated in terms of their effects on the protein's catalytic activity and susceptibility to the arginine-specific reagents and on its stability and rate of maturation in the cell's lysosome. These data demonstrate that the changes in the in vivo stability and rate of maturation, previously noted with the Arg211----His substitution, are independent of the loss in enzymatic activity. Whereas treatment of purified normal human placental hexosaminidases A and B with arginine-specific modifying reagents produced a time-dependent loss of enzymatic activity toward both alpha-specific and common substrates, these reagents failed to significantly decrease the residual activities of mutant proteins lacking Arg at position 211. Kinetic analysis of the residual enzyme activity from our most conservative construct, Arg211----Lys, determined an apparent Vmax approximately 400-fold reduced from that of the wild type enzyme but detected no change in the apparent Km. Additionally, the pH optimum of this mutant enzyme was narrower and slightly more basic than that of the normal enzyme. Thus, Arg211 in the beta-subunit and, by extrapolation, the Arg178 in the alpha-subunit of beta-hexosaminidase are "active" residues, i.e. part of the catalytic sites, but do not participate in substrate binding.  相似文献   

2.
Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site.  相似文献   

3.
Hou Y  Vocadlo D  Withers S  Mahuran D 《Biochemistry》2000,39(20):6219-6227
Tay-Sachs or Sandhoff disease results from a deficiency of either the alpha- or the beta-subunits of beta-hexosaminidase A, respectively. These evolutionarily related subunits have been grouped with the "Family 20" glycosidases. Molecular modeling of human hexosaminidase has been carried out on the basis of the three-dimensional structure of a bacterial member of Family 20, Serratia marcescens chitobiase. The primary sequence identity between the two enzymes is only 26% and restricted to their active site regions; therefore, the validity of this model must be determined experimentally. Because human hexosaminidase cannot be functionally expressed in bacteria, characterization of mutagenized hexosaminidase must be carried out using eukaryotic cell expression systems that all produce endogenous hexosaminidase activity. Even small amounts of endogenous enzyme can interfere with accurate K(m) or V(max) determinations. We report the expression, purification, and characterization of a C-terminal His(6)-tag precursor form of hexosaminidase B that is 99.99% free of endogenous enzyme from the host cells. Control experiments are reported confirming that the kinetic parameters of the His(6)-tag precursor are the same as the untagged precursor, which in turn are identical to the mature isoenzyme. Using highly purified wild-type and Arg(211)Lys-substituted hexosaminidase B, we reexamine the role of Arg(211) in the active site. As we previously reported, this very conservative substitution nevertheless reduces k(cat) by 500-fold. However, the removal of all endogenous activity has now allowed us to detect a 10-fold increase in K(m) that was not apparent in our previous study. That this increase in K(m) reflects a decrease in the strength of substrate binding was confirmed by the inability of the mutant isozyme to efficiently bind an immobilized substrate analogue, i.e., a hexosaminidase affinity column. Thus, Arg(211) is involved in substrate binding, as predicted by the chitobiase model, as well as catalysis.  相似文献   

4.
We have obtained a complete set of 20 variants of the alpha subunit of tryptophan synthase of Escherichia coli at position 49 in order to extend our previous studies on the effects of single amino acid replacements at position 49 on structure and function. Thirteen mutant alpha subunits have been newly constructed by site-directed mutagenesis using oligonucleotides. Six mutants were available from previous studies. We find that the wild type and all of the mutant alpha subunits form alpha 2 beta 2 complexes with the beta 2 subunit of tryptophan synthase with similar association constants and similarly stimulate the activity of the beta 2 subunit in the synthesis of L-tryptophan from L-serine and indole. Thus none of the changes at position 49 produces a change in the conformation of the alpha subunit which significantly interferes with normal subunit interaction. However, the 19 mutant alpha 2 beta 2 complexes are completely devoid of activity in reactions normally catalyzed by the active site of the alpha subunit. This is the first time that these several activities have been measured with a series of highly purified alpha subunits altered by mutation at a single site. Our finding that the mutant in which glutamic acid 49 is substituted by aspartic acid is totally devoid of alpha activity is especially significant and is strong evidence that glutamic acid 49 is an essential catalytic base in the reaction catalyzed by the alpha subunit. This result is consistent with the results of previous genetic studies, with evolutionary comparisons using sequence analysis, and with recent results from x-ray crystallography of the alpha 2 beta 2 complex of tryptophan synthase from Salmonella typhimurium.  相似文献   

5.
The alpha(2)beta(2) tryptophan synthase complex is a model enzyme for understanding allosteric regulation. We report the functional and regulatory properties of the betaS178P mutant. Ser-178 is located at the end of helix 6 of the beta subunit, belonging to the domain involved in intersubunit signaling. The carbonyl group of betaSer-178 is hydrogen bonded to Gly-181 of loop 6 of the alpha subunit only when alpha subunit ligands are bound. An analysis by molecular modeling of the structural effects caused by the betaS178P mutation suggests that the hydrogen bond involving alphaGly-181 is disrupted as a result of localized structural perturbations. The ratio of alpha to beta subunit concentrations was calculated to be 0.7, as for the wild type, indicating the maintenance of a tight alpha-beta complex. Both the activity of the alpha subunit and the inhibitory effect of the alpha subunit ligands indole-3-acetylglycine and d,l-alpha-glycerol-3-phosphate were found to be the same for the mutant and wild type enzyme, whereas the beta subunit activity of the mutant exhibited a 2-fold decrease. In striking contrast to that observed for the wild type, the allosteric effectors indole-3-acetylglycine and d,l-alpha-glycerol-3-phosphate do not affect the beta activity. Accordingly, the distribution of l-serine intermediates at the beta-site, dominated by the alpha-aminoacrylate, is only slightly influenced by alpha subunit ligands. Binding of sodium ions is weaker in the mutant than in the wild type and leads to a limited increase of the amount of the external aldimine intermediate, even at high pH, whereas binding of cesium ions exhibits the same affinity and effects as in the wild type, leading to an increase of the alpha-aminoacrylate tautomer absorbing at 450 nm. Crystals of the betaS178P mutant were grown, and their functional and regulatory properties were investigated by polarized absorption microspectrophotometry. These findings indicate that (i) the reciprocal activation of the alpha and beta activity in the alpha2beta2 complex with respect to the isolated subunits results from interactions that involve residues different from betaSer-178 and (ii) betaSer-178 is a critical residue in ligand-triggered signals between alpha and beta active sites.  相似文献   

6.
To understand how the alpha and beta 2 subunits of tryptophan synthase from Escherichia coli interact to form an alpha 2 beta 2 complex and undergo mutual activation, we have investigated alpha subunits with single amino acid replacements at conserved proline residues. Although the activities of alpha 2 beta 2 complexes that contain wild type alpha subunit or alpha subunits substituted at positions 28, 62, 96, and 207 are similar, the activities of alpha 2 beta 2 complexes that contain alpha subunits substituted at positions 57 and 132 are remarkably altered. Whereas the latter enzymes have greatly reduced activities in the individual half-reactions, they have considerably higher activities in the overall reaction. These remarkable activity results are explained by a decrease in the affinity of these mutant alpha subunits for the beta 2 subunit and by an increase in the affinity in the combined presence of ligands of both the alpha subunit and the beta 2 subunit. Isothermal calorimetric titrations of wild type beta 2 subunit with wild type alpha subunit and a mutant alpha subunit containing a substitution of glycine for proline at position 132 show that both the affinity and the exothermic association enthalpy are greatly reduced in the mutant alpha subunit although the stoichiometry of association is unchanged. The affinity of the mutant alpha subunit for the beta 2 subunits is greatly increased in the presence of an alpha subunit ligand, alpha-glycerol phosphate. We conclude that proline 132 plays a critical role in subunit interaction and in mutual subunit activation.  相似文献   

7.
8.
The pyridoxal 5'-phosphate (PLP)-dependent tryptophan synthase is a alpha(2)beta(2) complex. The alpha-beta subunit interaction plays a critical role both in the reciprocal activation of the individual subunits and in the allosteric regulation. We have investigated whether mutations of alpha loop6 Gly(181) and beta helix6 Ser(178) affect intersubunit communication. The loss of the hydrogen bond between these residues, achieved by proline substitution, does not significantly influence the intersubunit catalytic activation, but completely abolishes ligand-induced intersubunit signaling. The comparison of the crystal structure of the wild type and beta Ser(178)Pro mutant, in the absence and presence of alpha-subunit ligands, indicates that the removal of the interaction between beta Ser(178) and alpha Gly(181) strongly affects the equilibrium between active (closed) and inactive (open) conformations of the alpha-active site, the latter being stabilized in both mutants.  相似文献   

9.
Variable regulatory subunits of protein phosphatase 2A (PP2A) modulate activity, substrate selectivity and subcellular targeting of the enzyme. We have cloned a novel member of the B type regulatory subunit family, B delta, which is most highly related to B alpha. B delta shares with B alpha epitopes previously used to generate subunit-specific antibodies. Like B alpha, but unlike B beta and B gamma which are highly brain-enriched, B delta mRNA and protein expression in tissues is widespread. B delta is a cytosolic subunit of PP2A with a subcellular localization different from B alpha and may therefore target a pool of PP2A holoenzymes to specific substrates.  相似文献   

10.
There are two major isozymes of human lysosomal beta-hexosaminidase (beta-N-acetylhexosaminidase, EC 3.2.1.52), hexosaminidase A, alpha(beta a beta b), and hexosaminidase B, 2(beta a beta b). The alpha subunit contains a single polypeptide chain, while the beta subunit is composed of two nonidentical chains (beta a and beta b) derived from a common pro-beta precursor. The mature subunits, like those of most lysosomal enzymes, are produced through the proteolytic processing of propolypeptides once they enter the lysosome. In order to define the structure of the alpha and beta subunits generated in the lysosome, the alpha, beta a, and beta b polypeptides of hexosaminidase A and B were separated by a combination of molecular sieve and ion exchange high performance liquid chromatography, and amino-terminal sequences were determined. These were localized to the deduced amino acid sequences of previously isolated cDNAs coding for the prepro-alpha and beta polypeptides. From this analysis, the sites of hydrolysis generating the mature alpha, beta a, and beta b chains from hexosaminidase A and B could be determined. First, the signal peptide, required for processing of the pre-propolypeptides through the rough endoplasmic reticulum was predicted from the first in-frame Met residue on the cDNA. Second, amino acid sequencing defined the amino termini of the mature polypeptide chains and identified the pro-sequences removed from both the pro-alpha and pro-beta polypeptides. Third, an internal cleavage resulted in the removal of a tetrapeptide, Arg-Gln-Asn-Lys, and tripeptide, Arg-Gln-Asn, from the pro-beta chain of hexosaminidase A and B, respectively , to generate the beta b and beta a chains. This result localized the beta b and beta a chains to the amino-terminal and carboxyl-terminal halves of the pro-beta sequence, respectively. Finally, we previously reported minimal or no carboxyl-terminal processing of the pro-beta chain in the lysosome. On the other hand, we suggest that there is trimming at the carboxyl terminus of the pro-alpha chain based on comparison of molecular weights of deglycosylated alpha with the isolated beta b and beta a chains comprising the mature beta subunit with those predicted from the cDNA. Thus, in the lysosome the pro forms of hexosaminidase A and B undergo extensive proteolytic processing which, while specific in nature, has the appearance of removing easily accessible, nonessential domains, rather than contributing to biosynthetic maturation of function.  相似文献   

11.
A mutant strain KF43 of Escherichia coli defective in the beta subunit of H+-translocating ATPase (F0F1) was examined. In this mutant, replacement of Arg246 by His was identified by DNA sequencing of the mutant gene and confirmed by tryptic peptide mapping. The mutant F1-ATPase was defective in multi-site hydrolysis of ATP but was active in uni-site hydrolysis. Studies on the kinetics of uni-site hydrolysis indicated that the k1 (rate of ATP binding) was similar to that of the wild-type, but the k-1 (rate of release of ATP) could not be measured. The mutant enzyme had a k3 (rate of release of inorganic phosphate) about 15-fold higher than that of the wild-type and showed 3 orders of magnitude lower promotion from uni- to multi-site catalysis. These results suggest that Arg246 or the region in its vicinity is important in multi-site hydrolysis of ATP and is also related to the binding of inorganic phosphate. Reconstitution experiments using isolated subunits suggested that hybrid enzymes (alpha beta gamma complexes) carrying both the mutant and wild-type beta subunits were inactive in multi-site hydrolysis of ATP, supporting the notion that three intact beta subunits are required for activity of the F1 molecule.  相似文献   

12.
13.
Sodium channels consist of a pore-forming alpha subunit and auxiliary beta 1 and beta 2 subunits. The subunit beta 1 alters the kinetics and voltage-dependence of sodium channels expressed in Xenopus oocytes or mammalian cells. Functional modulation in oocytes depends on specific regions in the N-terminal extracellular domain of beta 1, but does not require the intracellular C-terminal domain. Functional modulation is qualitatively different in mammalian cells, and thus could involve different molecular mechanisms. As a first step toward testing this hypothesis, we examined modulation of brain Na(V)1.2a sodium channel alpha subunits expressed in Chinese hamster lung cells by a mutant beta1 construct with 34 amino acids deleted from the C-terminus. This deletion mutation did not modulate sodium channel function in this cell system. Co-immunoprecipitation data suggest that this loss of functional modulation was caused by inefficient association of the mutant beta 1 with alpha, despite high levels of expression of the mutant protein. In Xenopus oocytes, injection of approximately 10,000 times more mutant beta 1 RNA was required to achieve the level of functional modulation observed with injection of full-length beta 1. Together, these findings suggest that the C-terminal cytoplasmic domain of beta 1 is an important determinant of beta1 binding to the sodium channel alpha subunit in both mammalian cells and Xenopus oocytes.  相似文献   

14.
Gamma-aminobutyric acid, type A (GABAA) receptors are pentameric proteins of which the majority is composed of two alpha subunits, two beta subunits and one gamma subunit. It is well documented that two different types of alpha subunits can exist in a singles GABAA receptor complex. However, information on the abundance of such GABAA receptors is rather limited. Here we tested whether mice containing the His to Arg point mutation in the alpha1, alpha2, or alpha3 subunit at positions 101, 101, and 126, respectively, which render the respective subunits insensitive to diazepam, would be suitable to analyze this issue. Immunodepletion studies indicated that the His to Arg point mutation solely rendered those GABAA receptors totally insensitive to diazepam binding that contain two mutated alpha subunits in the receptor complex, whereas receptors containing one mutated and one heterologous alpha subunit not carrying the mutation remained sensitive to diazepam binding. This feature permitted a quantitative analysis of native GABAA receptors containing heterologous alpha subunits by comparing the diazepam-insensitive binding sites in mutant mouse lines containing one mutated alpha subunit with those present in mouse lines containing two different mutated alpha subunits. The data indicate that the alpha1alpha1-containing receptors with 61% is the most abundant receptor subtype in brain, whereas the alpha1alpha2 (13%), alpha1alpha3 (15%), alpha2alpha2 (12%), alpha2alpha3 (2%), and alpha3alpha3 combinations (4%) are considerably less expressed. Only within the alpha1-containing receptor population does the combination of equal alpha subunits (84% alpha1alpha1, 7% alpha1alpha2, and 8% alpha1alpha3) prevail, whereas in the alpha2-containing receptor population (46% alpha2alpha2, 36% alpha2alpha1, and 19% alpha2alpha3) and particularly in the alpha3-containing receptor population (27% alpha3alpha3, 56% alpha3alpha1, and 19% alpha3alpha2), the receptors with two different types of alpha subunits predominate. This experimental approach provides the basis for a detailed analysis of the abundance of GABAA receptors containing heterologous alpha subunits on a brain regional level.  相似文献   

15.
Human beta-hexosaminidase A (alpha beta) and B (beta beta) are composed of subunits (alpha and beta) that are 60% identical and have been grouped with other evolutionarily related glycosidases into "Family 20". The three-dimensional structure of only one Family 20 member has been elucidated, a bacterial chitobiase. This enzyme shares primary structure homology with both the human subunits only in its active-site region, and even in this restricted area, the level of identity is only 26%. Thus, the validity of the molecular model for the active site of the human enzyme based on chitobiase must be determined experimentally. In this report, we analyze highly purified mutant forms of human hexosaminidase B that have had conservative substitutions made at Glu and Asp residues predicted by the chitobiase model to be part of its active site. Mutation of beta Glu(355) to Gln reduces k(cat) 5000-fold with only a small effect on K(m), while also shifting the pH optimum. These effects are consistent with assignment of this residue as the acid/base catalytic residue. Similarly, mutation of beta Asp(354) to Asn reduced k(cat) 2000-fold while leaving K(m) essentially unaltered, consistent with assignment of this residue as the residue that interacts with the substrate acetamide group to promote its attack on the anomeric center. These data in conjunction with the mutagenesis studies of Asp(241) and Glu(491) indicate that the molecular model is substantially accurate in its identification of catalytically important residues.  相似文献   

16.
The alpha(M)beta(2) integrin plays an important role in leukocyte biology through its interactions with a diverse set of ligands. Efficient ligand binding requires the involvement of both the alpha(M) and beta(2) subunits. Past ligand binding studies have focused mainly on the alpha(M) subunit, with the beta(2) subunit being largely unexplored. Therefore, in this study we conducted homolog-scanning mutagenesis on the I-domain (residues 125-385) within the beta(2) subunit. We identified four noncontiguous sequences (Arg(144)-Lys(148), Gln(199)-Ala(203), Leu(225)-Leu(230), and Gly(305)-His(309)) that are critical for fibrinogen and C3bi binding to alpha(M)beta(2). Molecular modeling revealed that these four sequences reside within a narrow region on the surface of the beta(2)I-domain, in close proximity to three potential cation-binding sites. Among these sequences, Gln(199)-Ala(203), Leu(225)-Leu(230), and Gly(305)-His(309) are important for the binding of both ligands, whereas Arg(144)-Lys(148) is more critical for fibrinogen than for C3bi binding. These sequences within the beta(2)I-domain are directly involved in ligand binding, since 1) switching these segments to their corresponding beta(1) sequences destroyed ligand binding; 2) loss of function was not due to a nonspecific gross conformational change, since the defective alpha(M)beta(2) mutants reacted well with a panel of conformation-dependent mAbs; 3) mutation of these functional sequences did not effect Ca(2+) binding; and 4) synthetic peptides corresponding to sequences Gln(199)-Ala(203) and Gly(305)-His(309) blocked ligand binding to alpha(M)beta(2), and the peptides interacted directly with fibrinogen and C3bi. Given the similarity among all integrin beta subunits, our results may help us to understand the underlying mechanism of integrin-ligand interactions in general.  相似文献   

17.
The biochemical genetics of the hexosaminidase system in man.   总被引:5,自引:1,他引:4       下载免费PDF全文
Tay-Sachs disease and related GM2 ganglioside storage disorders result from the absence of one form of hexosaminidase, HEX A. The persistence of a second major hexosaminidase isozyme, HEX B, does not protect against the lethal accumulation of GM2 ganglioside in the central nervous system. Using immunologic and biochemical techniques, it has been demonstrated that the two major isozymes of hexosaminidase, HEX A and HEX B, share a common subunit, the structure of HEX A being designated (alpha beta)n and the structure of HEX B being designated as (beta2)n. The minor isozyme, HEX S, is an alpha chain homopolymer designated (alpha2)n, and HEX C seems unrelated to the HEX A, B, S system. The structures of other minor isozymes have not been totally resolved, but HEX I1, I2, and P (which may be identical to I2) appear to represent forms of HEX B.  相似文献   

18.
Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha1, alpha2, alpha1beta and alpha2beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha2beta GlyR relative to the alpha2 GlyR but not in the alpha1beta GlyR relative to the alpha1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha2beta GlyR was transferred to the alpha1beta GlyR by the G2'A (alpha1 to alpha2 subunit) substitution. In addition, the alpha1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.  相似文献   

19.
A GABA(A) receptor alpha1 subunit epilepsy mutation (alpha1(A322D)) introduces a negatively charged aspartate residue into the hydrophobic M3 transmembrane domain of the alpha1 subunit. We reported previously that heterologous expression of alpha1(A322D)beta2gamma2 receptors in mammalian cells resulted in reduced total and surface alpha1 subunit protein. Here we demonstrate the mechanism of this reduction. Total alpha1(A322D) subunit protein was reduced relative to wild type protein by a similar amount when expressed alone (86 +/- 6%) or when coexpressed with beta2 and gamma2S subunits (78 +/- 6%), indicating an expression reduction prior to subunit oligomerization. In alpha1beta2gamma2S receptors, endoglycosidase H deglycosylated only 26 +/- 5% of alpha1 subunits, consistent with substantial protein maturation, but in alpha1(A322D)beta2gamma2S receptors, endoglycosidase H deglycosylated 91 +/- 4% of alpha1(A322D) subunits, consistent with failure of protein maturation. To determine the cellular localization of wild type and mutant subunits, the alpha1 subunit was tagged with yellow (alpha1-YFP) or cyan (alpha1-CFP) fluorescent protein. Confocal microscopic imaging demonstrated that 36 +/- 4% of alpha1-YFPbeta2gamma2 but only 5 +/- 1% alpha1(A322D)-YFPbeta2gamma2 colocalized with the plasma membrane, whereas the majority of the remaining receptors colocalized with the endoplasmic reticulum (55 +/- 4% alpha1-YFPbeta2gamma2S, 86 +/- 3% alpha1(A322D)-YFP). Heterozygous expression of alpha1-CFPbeta2gamma2S and alpha1(A322D)-YFPbeta2gamma2S or alpha1-YFPbeta2gamma2S and alpha1(A322D)-CFPbeta2gamma2S receptors showed that membrane GABA(A) receptors contained primarily wild type alpha1 subunits. These data demonstrate that the A322D mutation reduces alpha1 subunit expression after translation, but before assembly, resulting in endoplasmic reticulum-associated degradation and membrane alpha1 subunits that are almost exclusively wild type subunits.  相似文献   

20.
Our studies, which are aimed at understanding the catalytic mechanism of the alpha subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to explore the functional roles of aspartic acid 60, tyrosine 175, and glycine 211. These residues are located close to the substrate binding site of the alpha subunit in the three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Our finding that replacement of aspartic acid 60 by asparagine, alanine, or tyrosine results in complete loss of activity in the reaction catalyzed by the alpha subunit supports a catalytic role for aspartic acid 60. Since the mutant form with glutamic acid at position 60 has partial activity, glutamic acid 60 may serve as an alternative catalytic base. The mutant form in which tyrosine 175 is replaced by phenylalanine has substantial activity; thus the phenolic hydroxyl of tyrosine 175 is not essential for catalysis or substrate binding. Yanofsky and colleagues have identified many missense mutant forms of the alpha subunit of tryptophan synthase from Escherichia coli. Two of these inactive mutant forms had either tyrosine 175 replaced by cysteine or glycine 211 replaced by glutamic acid. Surprisingly, a second-site revertant which contained both of these amino acid changes was partially active. These results indicated that the second mutation must compensate in some way for the first. We now extend the studies of the effects of specific amino acid replacements at positions 175 and 211 by two techniques: 1) characterization of several mutant forms of the alpha subunit from S. typhimurium prepared by site-directed mutagenesis and 2) computer graphics modeling of the substrate binding site of the alpha subunit using the x-ray coordinates of the wild type alpha 2 beta 2 complex from S. typhimurium. We conclude that the restoration of alpha subunit activity in the doubly altered second-site revertant results from restoration of the proper geometry of the substrate binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号