首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study investigated the requirement for ubiquitylation of PCNA at lysine 164 during polymerase eta-dependent translesion synthesis (TLS) of site-specific cis-syn cyclobutane thymine dimers (T (wedge)T). The in vitro assay recapitulated origin-dependent initiation, fork assembly, and semiconservative, bidirectional replication of double-stranded circular DNA substrates. A phosphocellulose column was used to fractionate HeLa cell extracts into two fractions; flow-through column fraction I (CFI) contained endogenous PCNA, RPA, ubiquitin-activating enzyme E1, and ubiquitin conjugase Rad6, and eluted column fraction II (CFII) included pol delta, pol eta, and RFC. CFII supplemented with purified recombinant RPA and PCNA (wild type or K164R, in which lysine was replaced with arginine) was competent for DNA replication and TLS. K164R-PCNA complemented CFII for these activities to the same extent and efficiency as wild-type PCNA. CFII mixed with CFI (endogenous PCNA, E1, Rad6) exhibited enhanced DNA replication activity, but the same TLS efficiency determined with the purified proteins. These results demonstrate that PCNA ubiquitylation at K164 of PCNA is not required in vitro for pol eta to gain access to replication complexes at forks stalled by T (wedge)T and to catalyze TLS across this dimer.  相似文献   

3.
4.
5.
6.
Ubiquitylation is a highly diverse and complex post-translational modification for the regulation of protein function and stability. Studies of ubiquitylation have, however, been hampered by its rapid reversal in cell extracts, for example through the action of de-ubiquitylating enzymes (DUBs). Here we describe a novel ubiquitin-binding protein reagent, MultiDsk, composed of an array of five UBA domains from the yeast ubiquitin-binding protein Dsk2, fused to GST. MultiDsk binds ubiquitylated substrates with unprecedented avidity, and can be used as both an affinity resin to study protein ubiquitylation, and to effectively protect ubiquitylated proteins from the action of DUBs and the proteasome in crude cell extracts. We use the resin to show that the Def1 protein becomes ubiquitylated in response to DNA damage, and to isolate ubiquitylated forms of RNA polymerase II.  相似文献   

7.
8.
9.
10.
11.
PCNA is a key component of DNA replication and repair machineries. DNA damage-induced PCNA ubiquitylation serves as a molecular mark to orchestrate postreplication repair. Here, we have identified and characterized Spartan, a protein that specifically recognizes ubiquitylated PCNA and plays an important role in cellular resistance to UV radiation. In vitro, Spartan engages ubiquitylated PCNA via both a PIP box and a UBZ domain. In cells, Spartan is recruited to sites of UV damage in a manner dependent upon the PIP box, the UBZ domain, and PCNA ubiquitylation. Furthermore, Spartan colocalizes and interacts with Rad18, the E3 ubiquitin ligase that modifies PCNA. Surprisingly, while Spartan is recruited by ubiquitylated PCNA, knockdown of Spartan compromised chromatin association of Rad18, monoubiquitylation of PCNA, and localization of Pol η to UV damage. Thus, as a "reader" of ubiquitylated PCNA, Spartan promotes an unexpected feed-forward loop to enhance PCNA ubiquitylation and translesion DNA synthesis.  相似文献   

12.
Post-translational modification of proteins by ubiquitin is a fundamentally important regulatory mechanism. However, proteome-wide analysis of endogenous ubiquitylation remains a challenging task, and almost always has relied on cells expressing affinity tagged ubiquitin. Here we combine single-step immunoenrichment of ubiquitylated peptides with peptide fractionation and high-resolution mass spectrometry to investigate endogenous ubiquitylation sites. We precisely map 11,054 endogenous putative ubiquitylation sites (diglycine-modified lysines) on 4,273 human proteins. The presented data set covers 67% of the known ubiquitylation sites and contains 10,254 novel sites on proteins with diverse cellular functions including cell signaling, receptor endocytosis, DNA replication, DNA damage repair, and cell cycle progression. Our method enables site-specific quantification of ubiquitylation in response to cellular perturbations and is applicable to any cell type or tissue. Global quantification of ubiquitylation in cells treated with the proteasome inhibitor MG-132 discovers sites that are involved in proteasomal degradation, and suggests a nonproteasomal function for almost half of all sites. Surprisingly, ubiquitylation of about 15% of sites decreased more than twofold within four hours of MG-132 treatment, showing that inhibition of proteasomal function can dramatically reduce ubiquitylation on many sites with non-proteasomal functions. Comparison of ubiquitylation sites with acetylation sites reveals an extensive overlap between the lysine residues targeted by these two modifications. However, the crosstalk between these two post-translational modifications is significantly less frequent on sites that show increased ubiquitylation upon proteasome inhibition. Taken together, we report the largest site-specific ubiquitylation dataset in human cells, and for the first time demonstrate proteome-wide, site-specific quantification of endogenous putative ubiquitylation sites.  相似文献   

13.
An assay that measures synchronized, processive DNA replication by Escherichia coli DNA polymerase III holoenzyme was used to reveal replacement of pol III by the specialized lesion bypass DNA polymerase IV when the replicative polymerase is stalled. When idled replication is restarted, a rapid burst of pol III-catalyzed synthesis accompanied by approximately 7-kb full-length products is strongly inhibited by the presence of pol IV. The production of slower-forming, shorter length DNA reflects a rapid takeover of DNA synthesis by pol IV. Here we demonstrate that pol IV rapidly (<15 s) obstructs the stable interaction between pol III* and the beta clamp (the lifetime of the complex is >5 min), causing the removal of pol III* from template DNA. We propose that the rapid replacement of pol III* on the beta clamp with pol IV is mediated by two processes, an interaction between pol IV and the beta clamp and a separate interaction between pol IV and pol III*. This newly discovered property of pol IV facilitates a dynamic exchange between the two free polymerases at the primer terminus. Our study suggests a model in which the interaction between pol III* and the beta clamp is mediated by pol IV to ensure that DNA replication proceeds with minimal interruption.  相似文献   

14.
Prim‐pol is a recently identified DNA primase‐polymerase belonging to the archaeao‐eukaryotic primase (AEP) superfamily. Here, we characterize a previously unrecognized prim‐pol in human cells, which we designate hPrimpol1 (human primase‐polymerase 1). hPrimpol1 possesses primase and DNA polymerase activities in vitro, interacts directly with RPA1 and is recruited to sites of DNA damage and stalled replication forks in an RPA1‐dependent manner. Cells depleted of hPrimpol1 display increased spontaneous DNA damage and defects in the restart of stalled replication forks. Both RPA1 binding and the primase activity of hPrimpol1 are required for its cellular function during DNA replication. Our results indicate that hPrimpol1 is a novel factor involved in the response to DNA replication stress.  相似文献   

15.
Endocytosis of the Fc receptor Fc gammaRIIA depends on a functional ubiquitin conjugation system, and the receptor becomes ubiquitylated upon ligand binding. Phosphorylation of tyrosines in Fc gammaRIIA by Src family kinases is thought to be the initiating event in its signaling. However, although the Src family kinase inhibitor PP1 inhibited both ligand-induced phosphorylation of Fc gammaRIIA and phagocytosis in ts20 cells expressing Fc gammaRIIA, it did not inhibit receptor ubiquitylation or endocytosis of soluble ligands. Conversely, genistein and the proteasomal inhibitor MG132 did not inhibit receptor phosphorylation but strongly inhibited both receptor ubiquitylation and endocytosis. A region of the receptor lying within the immunoreceptor tyrosine-based activation motif was found to be necessary for both ubiquitylation and endocytosis. Ubiquitylation occurs at the plasma membrane before internalization. Endocytosis of Fc gammaRIIA is dependent on clathrin but independent of the adaptor protein AP-2. These findings point to a novel mechanism for ubiquitylation and endocytosis of this immunoreceptor.  相似文献   

16.
17.
18.
DNA damage activated by Adriamycin (ADR) promotes ubiquitin–proteasome system-mediated proteolysis by stimulating both the activity of ubiquitylating enzymes and the proteasome. In ADR-resistant breast cancer MCF7 (MCF7ADR) cells, protein ubiquitylation is significantly reduced compared to the parental MCF7 cells. Here, we used tandem ubiquitin-binding entities (TUBEs) to analyze the ubiquitylation pattern observed in MCF7 or MCF7ADR cells. While in MCF7, the level of total ubiquitylation increased up to six-fold in response to ADR, in MCF7ADR cells only a two-fold response was found. To further explore these differences, we looked for cellular factors presenting ubiquitylation defects in MCF7ADR cells. Among them, we found the tumor suppressor p53 and its ubiquitin ligase, Mdm2. We also observed a drastic decrease of proteins known to integrate the TUBE-associated ubiquitin proteome after ADR treatment of MCF7 cells, like histone H2AX, HMGB1 or β-tubulin. Only the proteasome inhibitor MG132, but not the autophagy inhibitor chloroquine partially recovers the levels of total protein ubiquitylation in MCF7ADR cells. p53 ubiquitylation is markedly increased in MCF7ADR cells after proteasome inhibition or a short treatment with the isopeptidase inhibitor PR619, suggesting an active role of these enzymes in the regulation of this tumor suppressor. Notably, MG132 alone increases apoptosis of MCF7ADR and multidrug resistant ovarian cancer A2780DR1 and A2780DR2 cells. Altogether, our results highlight the use of ubiquitylation defects to predict resistance to ADR and underline the potential of proteasome inhibitors to treat these chemoresistant cells.  相似文献   

19.
Posttranslational modification of proteins with ubiquitin (ubiquitylation) regulates numerous cellular processes. Besides functioning as a signal for proteasomal degradation, ubiquitylation has also non-proteolytic functions by altering the biochemical properties of the modified protein. To investigate the effect(s) of ubiquitylation on the properties of a protein, sufficient amounts of homogenously and well-defined ubiquitylated proteins are required. Here, we report on the elaboration of a method for the generation of high amounts of site-specifically mono-ubiquitylated proteins. Firstly, a one-step affinity purification scheme was developed for ubiquitin containing the unnatural amino acid azidohomoalanine at the C-terminal position. This ubiquitin was conjugated in a click reaction to recombinant DNA polymerase β, equipped with an alkyne function at a distinct position. Secondly, addition of defined amounts of SDS to the reaction significantly improved product formation. With these two technical improvements, we have developed a straight forward procedure for the efficient generation of site-specifically ubiquitylated proteins that can be used to study the effect(s) of ubiquitylation on the activities/properties of a protein.  相似文献   

20.
The repair of DNA double strand breaks by homologous recombination relies on the unique topology of the chains formed by Lys-63 ubiquitylation of chromatin to recruit repair factors such as breast cancer 1 (BRCA1) to sites of DNA damage. The human RING finger (RNF) E3 ubiquitin ligases, RNF8 and RNF168, with the E2 ubiquitin-conjugating complex Ubc13/Mms2, perform the majority of Lys-63 ubiquitylation in homologous recombination. Here, we show that RNF8 dimerizes and binds to Ubc13/Mms2, thereby stimulating formation of Lys-63 ubiquitin chains, whereas the related RNF168 RING domain is a monomer and does not catalyze Lys-63 polyubiquitylation. The crystal structure of the RNF8/Ubc13/Mms2 ternary complex reveals the structural basis for the interaction between Ubc13 and the RNF8 RING and that an extended RNF8 coiled-coil is responsible for its dimerization. Mutations that disrupt the RNF8/Ubc13 binding surfaces, or that truncate the RNF8 coiled-coil, reduce RNF8-catalyzed ubiquitylation. These findings support the hypothesis that RNF8 is responsible for the initiation of Lys-63-linked ubiquitylation in the DNA damage response, which is subsequently amplified by RNF168.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号