首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

2.
The Escherichia coli ATP-binding cassette (ABC) proteins   总被引:8,自引:1,他引:7  
The recent completion of the Escherichia coli genome sequence ( Blattner et al ., 1997 ) has permitted an analysis of the complement of genomically encoded ATP-binding cassette (ABC) proteins. A total of 79 ABC proteins makes this the largest paralogous family of proteins in E . coli . These 79 proteins include 97 ABC domains (as some proteins include more than one ABC domain) and are components of 69 independent functional systems (as many systems involve more than one ABC domain). The ABC domains are often, but not exclusively, the energy-generating domains of multicomponent membrane-bound transporters. Thus, 57 of the 69 systems are ABC transporters, of which 44 are periplasmic-binding protein-dependent uptake systems and 13 are presumed exporters. The genes encoding these ABC transporters occupy almost 5% of the genome. Of the 12 systems that are not obviously transport related, the function of only one, the excision repair protein UvrA, is known. A phylogenetic analysis suggests that the majority of ABC proteins can be assigned to 10 subfamilies. Together with statistical and, importantly, biological evidence, this analysis provides insight into the evolution and function of the ABC proteins.  相似文献   

3.
Studies of the protein function of Borrelia burgdorferi have been limited by a lack of tools for manipulating borrelial DNA. We devised a system to study the function of a B. burgdorferi oligopeptide permease (Opp) orthologue by complementation with Escherichia coli Opp proteins. The Opp system of E. coli has been extensively studied and has well defined substrate specificities. The system is of interest in B. burgdorferi because analysis of its genome has revealed little identifiable machinery for synthesis or transport of amino acids and only a single intact peptide transporter operon. As such, peptide uptake may play a major role in nutrition for the organism. Substrate specificity for ABC peptide transporters in other organisms is determined by their substrate binding protein. The B. burgdorferi Opp operon differs from the E. coli Opp operon in that it has three separate substrate binding proteins, OppA-1, -2 and -3. In addition, B. burgdorferi has two OppA orthologues, OppA-4 and -5, encoded on separate plasmids. The substrate binding proteins interact with integral membrane proteins, OppB and OppC, to transport peptides into the cell. The process is driven by two ATP binding proteins, OppD and OppF. Using opp-deleted E. coli mutants, we transformed cells with B. burgdorferi oppA-1, -2, -4 or -5 and E. coli oppBCDF. All of the B. burgdorferi OppA proteins are able to complement E. coli OppBCDF to form a functional Opp transport system capable of transporting peptides for nutritional use. Although there is overlap in substrate specificities, the substrate specificities for B. burgdorferi OppAs are not identical to that of E. coli OppA. Transport of toxic peptides by B. burgdorferi grown in nutrient-rich medium parallels borrelial OppA substrate specificity in the complementation system. Use of this complementation system will pave the way for more detailed studies of B. burgdorferi peptide transport than currently available tools for manipulating borrelial DNA will allow.  相似文献   

4.
Multidrug resistance ABC transporters   总被引:11,自引:0,他引:11  
Chang G 《FEBS letters》2003,555(1):102-105
Clinical multidrug resistance is caused by a group of integral membrane proteins that transport hydrophobic drugs and lipids across the cell membrane. One class of these permeases, known as multidrug resistance ATP binding cassette (ABC) transporters, translocate these molecules by coupling drug/lipid efflux with energy derived from the hydrolysis of ATP. In this review, we examine both the structures and conformational changes of multidrug resistance ABC transporters. Together with the available biochemical and structural evidence, we propose a general mechanism for hydrophobic substrate transport coupled to ATP hydrolysis.  相似文献   

5.
6.
Energy coupling factor (ECF) transporters are a subgroup of ATP-binding cassette (ABC) transporters involved in the uptake of vitamins and micronutrients in prokaryotes. In contrast to classical ABC importers, ECF transporters do not make use of water-soluble substrate binding proteins or domains but instead employ integral membrane proteins for substrate binding (named S-components). S-components form active translocation complexes with the ECF module, an assembly of two nucleotide-binding domains (NBDs, or EcfA) and a second transmembrane protein. In some cases, the ECF module is dedicated to a single S-component, but in many cases, the ECF module can interact with several different S-components that are unrelated in sequence and bind diverse substrates. The modular organization with exchangeable S-components on a single ECF module allows the transport of chemically different substrates via a common route. The recent determination of the crystal structures of the S-components that recognize thiamin and riboflavin has provided a first clue about the mechanism of S-component exchange. This review describes recent advances and the current views of the mechanism of transport by ECF transporters.  相似文献   

7.
The ABC maltose transporter   总被引:6,自引:0,他引:6  
Bacterial ATP-binding cassette (ABC) transporters and their homologues in eukaryotic cells form one of the largest superfamilies known today. They function as primary pumps that couple substrate translocation across the cytoplasmic membrane to ATP hydrolysis. Although ABC transporters have been studied for more than three decades, the structure of these multicomponent systems is unknown, and the mechanism of transport is not understood. This article reviews one of the most widely studied ABC systems, the maltose transporter of Escherichia coli . A first structural model of the transport channel allows discussion of possible mechanisms of transport. In addition, recent experimental evidence suggests that regulation of gene expression and transport activity is far more complex than expected.  相似文献   

8.
ATP-binding cassette (ABC) transporters constitute a large superfamily of integral membrane proteins that includes both importers and exporters. In recent years, several structures of complete ABC transporters have been determined by X-ray crystallography. These structures suggest a mechanism by which binding and hydrolysis of ATP by the cytoplasmic, nucleotide-binding domains control the conformation of the transmembrane domains and therefore which side of the membrane the translocation pathway is exposed to. A basic, conserved two-state mechanism can explain active transport of both ABC importers and ABC exporters, but various questions remain unresolved. In this article, I will review some of the crystal structures and the mechanistic insight gained from them. Future challenges for a better understanding of the mechanism of ABC transporters will be outlined.  相似文献   

9.
ABC transporters are a large and important family of membrane proteins involved in substrate transport across the membrane. The transported substrates are quite diverse, ranging from monatomic ions to large biomolecules. Consequently, some ABC transporters are involved in biomedically relevant situations, from genetic diseases to multidrug resistance. The most conserved domains in ABC transporters are the nucleotide binding domains (NBDs), which form a dimer responsible for the binding and hydrolysis of ATP, concomitantly with substrate translocation. To elucidate how ATP hydrolysis structurally affects the NBD dimer, and consequently the transporter, we performed a molecular dynamics study on the NBD dimer of the HlyB ABC exporter. We have observed a change in the contact surface between the monomers after hydrolysis, even though we have not seen dimer opening in any of the five 100 ns simulations. We have also identified specific regions that respond to ATP hydrolysis, in particular the X-loop motif of ABC exporters, which has been shown to be in contact with the coupling helices of the transmembrane domains (TMDs). We propose that this motif is an important part of the NBD-TMD communication in ABC exporters. Through nonequilibrium analysis, we have also identified gradual conformational changes within a short time scale after ATP hydrolysis.  相似文献   

10.
Structure,Function, and Evolution of Bacterial ATP-Binding Cassette Systems   总被引:1,自引:0,他引:1  
Summary: ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.  相似文献   

11.
The specific and tightly controlled transport of numerous nutrients and metabolites across cellular membranes is crucial to all forms of life. However, many of the transporter proteins involved have yet to be identified, including the vitamin transporters in various human pathogens, whose growth depends strictly on vitamin uptake. Comparative analysis of the ever-growing collection of microbial genomes coupled with experimental validation enables the discovery of such transporters. Here, we used this approach to discover an abundant class of vitamin transporters in prokaryotes with an unprecedented architecture. These transporters have energy-coupling modules comprised of a conserved transmembrane protein and two nucleotide binding proteins similar to those of ATP binding cassette (ABC) transporters, but unlike ABC transporters, they use small integral membrane proteins to capture specific substrates. We identified 21 families of these substrate capture proteins, each with a different specificity predicted by genome context analyses. Roughly half of the substrate capture proteins (335 cases) have a dedicated energizing module, but in 459 cases distributed among almost 100 gram-positive bacteria, including numerous human pathogens, different and unrelated substrate capture proteins share the same energy-coupling module. The shared use of energy-coupling modules was experimentally confirmed for folate, thiamine, and riboflavin transporters. We propose the name energy-coupling factor transporters for the new class of membrane transporters.  相似文献   

12.
The polymannan O-antigenic polysaccharides (O-PSs) of Escherichia coli O8 and O9a are synthesized via an ATP-binding cassette (ABC) transporter-dependent pathway. The group 2 capsular polysaccharides of E. coli serve as prototypes for polysaccharide synthesis and export via this pathway. Here, we show that there are some fundamental differences between the ABC transporter-dependent pathway for O-PS biosynthesis and the capsular polysaccharide paradigm. In the capsule system, mutants lacking the ABC transporter are viable, and membranes isolated from these strains are no longer able to synthesize polymer using an endogenous acceptor. In contrast, E. coli strains carrying mutations in the membrane component (Wzm) and/or the nucleotide-binding component (Wzt) of the O8 and O9a polymannan transporters are nonviable under conditions permissive to O-PS biosynthesis and take on an aberrant elongated cell morphology. Whereas the ABC transporters for capsular polysaccharides with different structures are functionally interchangeable, the O8 and O9a exporters are specific for their cognate polymannan substrates. The E. coli O8 and O9a Wzt proteins contain a C-terminal domain not present in the corresponding nucleotide-binding protein (KpsT) from the capsule exporter. Whereas the Wzm components are functionally interchangeable, albeit with reduced efficiency, the Wzt components are not, indicating a specific role for Wzt in substrate specificity. Chimeric Wzt proteins were constructed in order to localize the region involved in substrate specificity to the C-terminal domain.  相似文献   

13.
The maltose transport system of Escherichia coli is a well-characterized member of the ATP binding cassette transporter superfamily. Members of this family share sequence similarity surrounding two short sequences (the Walker A and B sequences) which constitute a nucleotide binding pocket. It is likely that the energy from binding and hydrolysis of ATP is used to accomplish the translocation of substrate from one location to another. Periplasmic binding protein-dependent transport systems, like the maltose transport system of E.coli, possess a water-soluble ligand binding protein that is essential for transport activity. In addition to delivering ligand to the membrane-bound components of the system on the external face of the membrane, the interaction of the binding protein with the membrane complex initiates a signal that is transmitted to the ATP binding subunit on the cytosolic side and stimulates its hydrolytic activity. Mutations that alter the membrane complex so that it transports independently of the periplasmic binding protein also result in constitutive activation of the ATPase. Genetic analysis indicates that, in general, two mutations are required for binding protein-independent transport and constitutive ATPase. The mutations alter residues that cluster to specific regions within the membrane spanning segments of the integral membrane components MalF and MalG. Individually, the mutations perturb the ability of MBP to interact productively with the membrane complex. Genetic alteration of this signalling pathway suggests that other agents might have similar effects. These could be potentially useful for modulating the activities of ABC transporters such as P-glycoprotein or CFTR, that are implicated in disease.  相似文献   

14.
The ABC superfamily is a diverse group of integral membrane proteins involved in the ATP-dependent transport of solutes across biological membranes in both prokaryotes and eukaryotes. Although ABC transporters have been studied for over 30 years, very little is known about the mechanism by which the energy of ATP hydrolysis is used to transport substrate across the membrane. The recent report of the high resolution crystal structure of HisP, the nucleotide-binding subunit of the histidine permease complex of Salmonella typhimurium, represents a significant breakthrough toward the elucidation of the mechanism of solute translocation by ABC transporters. In this review, we use data from the crystallographic structures of HisP and other nucleotide-binding proteins, combined with sequence analysis of a subset of atypical ABC transporters, to argue a new model for the dimerisation of the nucleotide-binding domains that embraces the notion that the C motif from one subunit forms part of the ATP-binding site in the opposite subunit. We incorporate this dimerisation of the ATP-binding domains into our recently reported beta-barrel model for P-glycoprotein and present a general model for the cooperative interaction of the two nucleotide-binding domains and the translocation of mechanical energy to the transmembrane domains in ABC transporters.  相似文献   

15.
ATP-binding cassette (ABC) transporters utilize the energy present in cellular ATP to drive the translocation of structurally diverse set of solutes across the membrane barriers of eubacteria, archaebacteria and eukaryotes. In bacteria, these transporters are considered to be important virulence factors because they play role in nutrient uptake and in the secretion of toxins. The advances in structural determination and functional analysis of bacterial transporters have greatly increased our understanding of the mechanism of transport of these ABC transporters. Although progress in the field of structural biology has been made with the prokaryotic family members, it is likely that eukaryotic transporters will utilize the same mechanisms for translocation process. In this review, we summarize the function of the known MsbA ABC transporters in E. coli and mechanistic insights from structural and possible flippase mechanism studies.  相似文献   

16.
Locher KP  Borths E 《FEBS letters》2004,564(3):264-268
ABC transporters are ubiquitous membrane proteins that facilitate unidirectional substrate translocation across the lipid bilayer. Over the past five years, new crystal structures have advanced our understanding of how ABC transporters couple adenosine triphosphate (ATP) hydrolysis to substrate transport. In the following, we will briefly review the results of these structural investigations and outline their mechanistic implications.  相似文献   

17.
ATP binding cassette (ABC) transporters, which are found in all species, are known mainly for their ability to confer drug resistance. They have been thoroughly studied in mammals, where they became the center of interest for clinical reasons related to the resistance of tumor cells to chemotherapy treatment. Less is known about plant members of the ABC family, however, growing number of reports on their role in different physiological processes attract attention. The vacuolar ABC transporters in plants characterized to date are involved in the intracellular sequestration of cytotoxins (e.g. herbicides), as well as the products of endogenous metabolism like chlorophyll catabolites. Others localized within plasma membrane are active in the transport of secondary metabolites or phytohormones. Finally certain transporters are present in cell organelles and play a role in such processes as P oxidation. Here, we briefly introduce these proteins, and describe structural characteristic and physiological aspect of their activity in a plant cell.  相似文献   

18.
Abstract

ATP-binding cassette transporters are multi-subunit membrane pumps that transport substrates across membranes. While significant in the transport process, transporter architecture exhibits a range of diversity that we are only beginning to recognize. This divergence may provide insight into the mechanisms of substrate transport and homeostasis. Until recently, ABC importers have been classified into two types, but with the emergence of energy-coupling factor (ECF) transporters there are potentially three types of ABC importers. In this review, we summarize an expansive body of research on the three types of importers with an emphasis on the basics that underlie ABC importers, such as structure, subunit composition and mechanism.  相似文献   

19.
ABC transporters: bacterial exporters.   总被引:1,自引:0,他引:1       下载免费PDF全文
The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review.  相似文献   

20.
Separate proteins for proton-linked transport of D-xylose, L-arabinose, D-galactose, L-rhamnose and L-fucose into Escherichia coli are being studied. By cloning and sequencing the appropriate genes, the amino acid sequences of proteins for D-xylose/H+ symport (XylE), L-arabinose/H+ symport (AraE), and part of the protein for D-galactose/H+ symport (GalP) have been determined. These are homologous, with at least 28% identical amino acid residues conserved in the aligned sequences, although their primary sequences are not similar to those of other E. coli transport proteins for lactose, melibiose, or D-glucose. However, they are equally homologous to the passive D-glucose transport proteins from yeast, rat brain, rat adipocytes, human erythrocytes, human liver, and a human hepatoma cell line. The substrate specificity of GalP from E. coli is similar to that of the mammalian glucose transporters. Furthermore, the activities of GalP, AraE and the mammalian glucose transporters are all inhibited by cytochalasin B and N-ethylmaleimide. Conserved residues in the aligned sequences of the bacterial and mammalian transporters are identified, and the possible roles of some in sugar binding, cation binding, cytochalasin binding, and reaction with N-ethylmaleimide are discussed. Each protein is independently predicted to form 12 hydrophobic, membrane-spanning alpha-helices with a central hydrophilic segment, also comprised of alpha-helix. This unifying structural model of the sugar transporters shares features with other ion-linked transport proteins for citrate or tetracycline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号