共查询到20条相似文献,搜索用时 15 毫秒
1.
Exploring the sequence space of a DNA aptamer using microarrays 总被引:1,自引:1,他引:1
The relationship between sequence and binding properties of an aptamer for immunoglobulin E (IgE) was investigated using custom DNA microarrays. Single, double and some triple mutations of the aptamer sequence were created to evaluate the importance of specific base composition on aptamer binding. The majority of the positions in the aptamer sequence were found to be immutable, with changes at these positions resulting in more than a 100-fold decrease in binding affinity. Improvements in binding were observed by altering the stem region of the aptamer, suggesting that it plays a significant role in binding. Results obtained for the various mutations were used to estimate the information content and the probability of finding a functional aptamer sequence by selection from a random library. For the IgE-binding aptamer, this probability is on the order of 10−10 to 10−9. Results obtained for the double and triple mutations also show that there are no compensatory mutations within the space defined by those mutations. Apparently, at least for this particular aptamer, the functional sequence space can be represented as a rugged landscape with sharp peaks defined by highly constrained base compositions. This makes the rational optimization of aptamer sequences using step-wise mutagenesis approaches very challenging. 相似文献
2.
Statistical issues with microarrays: processing and analysis 总被引:17,自引:0,他引:17
The study of gene expression with printed arrays and prefabricated chips is evolving from a qualitative to a quantitative science. Statistical procedures for determining quality control, differential expression, and reproducibility of findings are a natural consequence of this evolution. However, problems inherent to the technologies have raised important issues of how to apply adequate statistical tests. As a consequence, statistical approaches to microarray research are not yet as routine as they are in other sciences. Statistical methods, tailored to microarrays, continue to be adapted and developed. We present an overview of these methods and of outstanding issues in their use and validation. 相似文献
3.
Laurenson S Pett MR Hoppe-Seyler K Denk C Hoppe-Seyler F Coleman N Ko Ferrigno P 《Analytical biochemistry》2011,(2):1560-170
Protein microarrays represent an emerging technology that promises to facilitate high-throughput proteomics. The major goal of this technology is to employ peptides, full-length proteins, antibodies, and small molecules to simultaneously screen thousands of targets for potential protein–protein interactions or modifications of the proteome. This article describes the performance of a set of peptide aptamers specific for the human papillomavirus (HPV) type 16 oncoproteins E6 and E7 in a microarray format. E6 and E7 peptide aptamer microarrays were probed with fluorescence-labeled lysates generated from HPV-infected cervical keratinocytes expressing both E6 and E7 oncoproteins. Peptide aptamer microarrays are shown to detect low levels of E6 and E7 proteins. Peptide aptamers specific for cellular proteins included on these microarrays suggested that expression of CDK2, CDK4, and BCL-6 may be affected by HPV infection and genome integration. We conclude that peptide aptamer microarrays represent a promising tool for proteomics and may be of value in biological and clinical investigations of cervical carcinogenesis. 相似文献
4.
RNA microarrays were created on chemically modified gold surfaces using a novel surface ligation methodology and employed in a series of surface plasmon resonance imaging (SPRI) measurements of DNA–RNA hybridization and RNA aptamer–protein binding. Various unmodified single-stranded RNA (ssRNA) oligonucleotides were ligated onto identical 5′-phosphate-terminated ssDNA microarray elements with a T4 RNA ligase surface reaction. A combination of ex situ polarization modulation FTIR measurements of the RNA monolayer and in situ SPRI measurements of DNA hybridization adsorption onto the surface were used to determine an ssRNA surface density of 4.0 × 1012 molecules/cm2 and a surface ligation efficiency of 85 ± 10%. The surface ligation methodology was then used to create a five-component RNA microarray of potential aptamers for the protein factor IXa (fIXa). The relative surface coverages of the different aptamers were determined through a novel enzymatic method that employed SPRI measurements of a surface RNase H hydrolysis reaction. SPRI measurements were then used to correctly identify the best aptamer to fIXa, which was previously determined from SELEX measurements. A Langmuir adsorption coefficient of 1.6 × 107 M−1 was determined for fIXa adsorption to this aptamer. Single-base variations from this sequence were shown to completely destroy the aptamer–fIXa binding interaction. 相似文献
5.
Microarray chips produced by commercial vendors and academic laboratories are mostly generic in nature to facilitate wide applicability. With the sequencing of the human, mouse, and rat genomes, the thrust is to expand clone and oligonucleotide sets and increase the number of genes represented on a particular array. This is appropriate for discovery based investigations where microarray technology has been successfully utilized. However, array technology can also be employed to perform hypothesis based studies if optimized chips can be produced with relevant content. Existing array technology available at core facilities can be effectively utilized to produce a custom microarrays with genes that are most relevant to the research interests of individual investigators or research groups for use as a standard molecular tool. The power of this technology can be harnessed to further our understanding of specific biological problems without involvement in extensive data mining and analysis. The custom microarray approach is presented with procedural details for design and production in the context of neurobiological investigations. 相似文献
6.
Lopez F Rougemont J Loriod B Bourgeois A Loï L Bertucci F Hingamp P Houlgatte R Granjeaud S 《BMC genomics》2004,5(1):38-14
Background
High-density DNA microarrays require automatic feature extraction methodologies and softwares. These can be a potential source of non-reproducibility of gene expression measurements. Variation in feature location or in signal integration methodology may be a significant contribution to the observed variance in gene expression levels. 相似文献7.
Microarrays are particular biosensors with multiple grafted probes that are generally used for parallel and simultaneous detection of various targets. In this study, we used microarrays with aptamer probes in order to follow up the different biomolecular interactions of a single enzyme, the thrombin protein, involved in the complex coagulation cascade. More precisely, thanks to label-free surface plasmon resonance imaging, we were able to monitor in real time an important step in the firing of the coagulation cascade in situ—the enzymatic transformation of prothrombin into thrombin, catalyzed by factor Xa. We were also able to appraise the influence of other biochemical factors and their corresponding inhibiting or enhancing behaviors on thrombin activation. Our study opens the door for the development of a complete microarray-based platform not only for the whole coagulation cascade analysis but also for novel drug screening assays in pharmacology. 相似文献
8.
In DNA microarray technology, repeatability and reliability are very important to compare multiple RNA samplesfrom different experiments. The application of common or universal RNA as a standard control equalizes the differences in hybridization parameters and array variations. For this purpose, high-quality reference RNA is necessary in bulk amounts. A novel approach was developed to get milligrams of sense or antisense RNA, starting from micrograms of pooled total RNA from different cell lines, tissues, or organisms. This method is inexpensive and allows further labeling procedures using poly(dT) or random oligomers as primers. In addition, amplified, sense reference RNA is suitable for standard labeling protocols, while the antisense reference RNA can be used with antisense RNA from the linear sample amplification method. Here we produced universal RNA for human, rat, and alfalfa and demonstrated the quality using specific cDNA microarrays. 相似文献
9.
Production by quantitative photolithographic synthesis of individually quality checked DNA microarrays 总被引:2,自引:2,他引:0
For DNA chip analyses, oligonucleotide quality has immense consequences for accuracy, sensitivity and dynamic range. The quality of chips produced by photolithographic in situ synthesis depends critically on the efficiency of photo-deprotection. By means of base-assisted enhancement of this process using 5′-[2-(2-nitrophenyl)-propyloxycarbonyl]-2′-deoxynucleoside phosphoramidites, synthesis yields improved by at least 12% per condensation compared to current chemistries. Thus, the eventual total yield of full-length oligonucleotide is increased more than 10-fold in the case of 20mers. Furthermore, the quality of every individual array position was checked quantitatively after synthesis. Subsequently, the quality tested chips were used in successive hybridisation experiments. 相似文献
10.
Yoojin Park Duangrat Nim-anussornkul Tirayut Vilaivan Takashi Morii Byeang Hyean Kim 《Bioorganic & medicinal chemistry letters》2018,28(2):77-80
We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex. 相似文献
11.
12.
CGH microarrays and cancer 总被引:3,自引:0,他引:3
Kallioniemi A 《Current opinion in biotechnology》2008,19(1):36-40
Genetic alterations are a key feature of cancer cells and typically target biological processes and pathways that contribute to cancer pathogenesis. Array-based comparative genomic hybridization (aCGH) has provided a wealth of new information on copy number changes in cancer on a genome-wide level and aCGH data have also been utilized in cancer classification. More importantly, aCGH analyses have allowed highly accurate localization of specific genetic alterations that, for example, are associated with tumor progression, therapy response, or patient outcome. The genes involved in these aberrations are likely to contribute to cancer pathogenesis, and the high-resolution mapping by aCGH greatly facilitates the subsequent identification of these cancer-associated genes. 相似文献
13.
The identification of disease-related genes is a major focus of modern biomedical research. Recent techniques, including array-based platforms for molecular profiling of disease tissues such as DNA arrays for expression profiling or matrix comparative genomic hybridization, allow for the comprehensive screening of the whole genome in a single experiment. Consequently, thousands of candidate genes have already been identified that may be linked to disease development and progression, and the process of lead discovery continues unimpeded. The evaluation of the clinical value of such leads is challenging because thousands of well-characterized tissue specimens must be analyzed. Tissue microarray (TMA) technology enables high-throughput tissue analyses to keep pace with the rapid process of lead discovery. With this technique, up to 1000 minute tissue samples are brought into an array format and analyzed simultaneously. The TMA technology is a fast, cost-effective, and statistically powerful method that will substantially facilitate translational research. 相似文献
14.
Immunomagnetic DNA aptamer assay 总被引:2,自引:0,他引:2
DNA aptamers, oligonucleotides with antibody-like binding properties, are easy to manufacture and modify. As a class of molecules, they represent the biggest revolution to immunodiagnostics since the discovery of monoclonal antibodies. To demonstrate that DNA aptamers are versatile reagents for use as in vitro diagnostic tools, we developed a hybrid immunobead assay based on a 5'-biotinylated DNA thrombin aptamer (5'-GGTTGGTGTGGTTGG-3') and an anti-thrombin antibody (EST-7). Our results show that the thrombin DNA aptamer is capable of binding to its target molecule under stringent in vitro assay conditions and at physiological concentrations. These findings also support the view that DNA aptamers have potential value as complementary reagents in diagnostic assays. 相似文献
15.
Wang D 《Proteomics》2003,3(11):2167-2175
Sugar chains are abundantly expressed on the outer surfaces of the vast majority of viral, bacterial, protozoan and fungal pathogens, as well as on the membranes of mammalian cells. This class of carbohydrate molecule is without peer in structural diversity and is characteristically suitable for storing and displaying biological signals for molecular and cellular recognition. Exploring the biological information contained in sugar chains is an important topic of current postgenomic research. To facilitate these investigations, we have focused on the establishment of a carbohydrate-based microarray technology. Recently, we reported that a large panel of carbohydrate-containing macromolecules, including polysaccharides, natural glycoconjugates, and the mono- and oligosaccharides coupled to carrier molecules, can be stably immobilized on a microglass slide to produce a large-scale carbohydrate microarray. In this review, we attempt to summarize our recent progress in using this technology to uncover the carbohydrate-based biological signals that are recognized by the human and animal immune systems. We also discuss the potential of various platforms of carbohydrate microarrays that were recently established and analyze the challenges to future development of carbohydrate microarray technologies and their applications. 相似文献
16.
17.
Protein arrays and microarrays 总被引:26,自引:0,他引:26
In the past, studies of protein activities have focused on studying a single protein at a time, which is often time-consuming and expensive. Recently, with the sequencing of entire genomes, large-scale proteome analysis has begun. Arrays of proteins have been used for the determination of subcellular localization, analysis of protein-protein interactions and biochemical analysis of protein function. New protein-microarray technologies have been introduced that enable the high-throughput analysis of protein activities. These have the potential to revolutionize the analysis of entire proteomes. 相似文献
18.
Cancer diagnosis and microarrays 总被引:1,自引:0,他引:1
Microarray technology allows the investigation of the cell status on a molecular, genome-wide scale and has been shown to identify a given cell species by its gene expression profile. This may be highly valuable in future cancer diagnosis, because traditional clinical and pathological assessments of the tumour status cannot distinguish between morphologically similar but molecularly different tumours. These molecular differences, however are crucial in determining the clinical course of the disease. Despite this, in the majority of cases it has remained impossible to reliably characterise molecular phenotype and predict the response to therapy and the ultimate outcome for the patient. Microarray technology holds the potential to revolutionise the diagnosis and therapy of cancer. Recent developments in microarray technology and data analysis are discussed as well as examples of their application to define molecular phenotype. 相似文献
19.
A tetracycline-binding RNA aptamer 总被引:5,自引:0,他引:5
Aptamers are perfect tools to study the interaction of small ligands with RNA. To study the mode of interaction of tetracycline with RNA, we isolated aptamers with high affinity to this antibiotic via in vitro selection. One of the selected aptamers, cb28, which has a comparable affinity to tetracycline as the small ribosomal subunit, was characterised in more detail. Cb28 binds only to typical tetracyclines, while atypical tetracyclines are not recognised. The hydroxyl group at position 6 is an essential determinant for recognition, while modifications at positions 4, 5 and 7 do not interfere with RNA binding. Binding of tetracycline to cb28 is magnesium dependent. The secondary structure of cb28 was determined by lead cleavage and DMS modification. Upon tetracycline binding, nucleotides in J2/3 and the P5 stem-loop are protected from cleavage by lead, indicating a conformational change in the RNA. This conformational change was confirmed by tetracycline dependent changes in the DMS modification pattern. Photo-induced affinity incorporation of tetracycline into cb28 resulted in a crosslink to position G76, a residue in L5. The mode of binding of tetracycline to the cb28 aptamer resembles its interaction with the primary binding site on the small ribosomal subunit. 相似文献
20.
Tao Wang Changying Chen Leon M. Larcher Roberto A. Barrero Rakesh N. Veedu 《Biotechnology advances》2019,37(1):28-50
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications. 相似文献