首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Karyotypes of the aoudad and sheep were compared on the basis of G-banded chromosomes at the 450 band level. The common G-banded karyotype showed the homology of all aoudad chromosomes (2n=58) with sheep chromosomes (2n=54) or sheep chromosome arms. The results of cytogenetic investigations suggest that in this case karyotype evolution has led to reduction in chromosome number as a result of centric fusions. The formation of the first metacentric chromosome occurred in the aoudad. The homology of the G-banding pattern in sheep and aoudad suggests the conservation in linear arrangement of genetic material. Thus comparative cytogenetics can be a useful tool in gene mapping.  相似文献   

2.
The early phylogeny of the 137 species in the Bovidae family is difficult to resolve; knowledge of the evolution and relationships of the tribes would facilitate comparative mapping, understanding chromosomal evolution patterns and perhaps assist breeding and domestication strategies. We found that the study of the presence and organization of two repetitive DNA satellite sequences (the clone pOaKB9 from sheep, a member of the 1.714 satellite I family and the pBtKB5, a 1.715 satellite I clone from cattle) on the X and autosomal chromosomes by in situ hybridization to chromosomes from 15 species of seven tribes, was informative. The results support a consistent phylogeny, suggesting that the primitive form of the X chromosome is acrocentric, and has satellite I sequences at its centromere. Because of the distribution of the ancient satellite I sequence, the X chromosome from the extant Tragelaphini (e.g. oryx), rather than Caprini (sheep), line is most primitive. The Bovini (cow) and Tragelaphini tribes lack the 1.714 satellite present in the other tribes, and this satellite is evolutionarily younger than the 1.715 sequence, with absence of the 1.714 sequence being a marker for the Bovini and Tragelaphini tribes (the Bovinae subfamily). In the other tribes, three (Reduncini, Hippotragini and Aepycerotini) have both 1.714 and 1.715 satellite sequences present on both autosomes and the X chromosome. We suggest a parallel event in two lineages, leading to X chromosomes with the loss of 1.715 satellite from the Bovini, and the loss of both 1.714 and 1.715 satellites in a monophyletic Caprini and Alcelaphini lineage. The presence and X chromosome distribution of these satellite sequences allow the seven tribes to be distributed to four groups, which are consistent with current diversity estimates, and support one model to resolve points of separation of the tribes.  相似文献   

3.
A taxonomic division of the family Bovidae (Artiodactyla) is difficult and the evolutionary relationships among most bovid subfamilies remain uncertain. In this study, we isolated the cattle satellite I clone BTREP15 (1.715 satellite DNA family) and autosomal centromeric DNAs of members of ten bovid tribes. We wished to determine whether the analysis of fluorescence in situ hybridization patterns of the cattle satellite I clone (BTREP15) and tribe-specific centromeric repeats isolated by laser microdissection would help to reveal some of the ambiguities occurring in the systematic classification of the family Bovidae. The FISH study of the presence and distribution of the cattle satellite I clone BTREP15 (1.715 satellite DNA family) within members of ten bovid tribes was not informative. FISH analysis of autosomal centromeric DNA probes in several species within one tribe revealed similar hybridization patterns in autosomes confirming tribal homogeneity of these probes. Sex chromosomes showed considerable variation in sequence composition and arrangement not only between tribes but also between species of one tribe. According to our findings it seems that Oreotragus oreotragus developed its own specific satellite DNA which does not hybridize to any other bovid species analysed. Our results suggest O. oreotragus as well as Aepyceros melampus may be unique species not particularly closely related to any of the recognized bovid tribes. This study indicates the isolation of tribe-specific centromeric DNAs by laser microdissection and cloning the sequence representing the main motif of these repetitive DNAs could offer the perspectives for comparative phylogenetic studies.  相似文献   

4.
Peripheral blood lymphocyte metaphase chromosomes of three Bovoidean species have been studied using Quinacrine fluorescence and Giemsa banding techniques to give Q-, G-, and C-banding patterns. Q- and G-banding characteristics, coupled with chromosome length, enabled all of the chromosomes in each of the chromosome complements to be clearly distinguished, although some difficulties were encountered with the very smallest chromosomes. A comparison of G-banding patterns between the species revealed a remarkable degree of homology of banding patterns. Each of the 23 different acrocentric autosomes of the domestic sheep (2n=54) was represented by an identical chromosome in the goat (2n=60) and the arms of the 3 pairs of sheep metacentric autosomes were identical matches with the remaining 6 goat acrocentrics. A similar interspecies homology was evident for all but two of the autosomes in the ox (2n=60). This homology between sheep metacentric and goat acrocentric elements confirms a previously suggested Robertsonian variation. The close homology in G-banding patterns between these related species indicates that the banding patterns are evolutionarily conservative and may be a useful guide in assessing interspecific relationships. —The centromeric heterochromatin in the autosomes of the three species was found to show little or no Q-or G-staining, in contrast to the sex chromosomes. This lack of centromeric staining with the G-technique (ASG) contrasts markedly with results obtained with other mammalian species. However, with the C-banding technique these regions show a normal intense Giemsa stain and the C-bands in the sex chromosomes are inconspicuous. The amount of centromeric heterochromatin in the sheep metacentric chromosomes is considerable less than in the acrocentric autosomes or in a newly derived metacentric element discovered in a goat. It is suggested that the pale G-staining of the centromeric heterochromatin in these species might be related to the presence of G-Crich satellite DNA.  相似文献   

5.
Repetitive DNA in the mammalian genome is a valuable record and marker for evolution, providing information about the order and driving forces related to evolutionary events. The evolutionarily young 1.709 satellite IV DNA family is present near the centromeres of many chromosomes in the Bovidae. Here, we isolated 1.709 satellite DNA sequences from five Bovidae species belonging to Bovini: Bos taurus (BTA, cattle), Bos indicus (BIN, zebu), Bubalus bubalis (BBU, water buffalo) and Tragelaphini tribes: Taurotragus oryx (TOR, eland) and Tragelaphus euryceros (TEU, bongo). Its presence in both tribes shows the sequence predates the evolutionary separation of the two tribes (more than 10 million years ago), and primary sequence shows increasing divergence with evolutionary distance. Genome organization (Southern hybridization) and physical distribution (in situ hybridization) revealed differences in the molecular organization of these satellite DNA sequences. The data suggest that the sequences on the sex chromosomes and the autosomes evolve as relatively independent groups, with the repetitive sequences suggesting that Bovini autosomes and the Tragelaphini sex chromosomes represent the more primitive chromosome forms.  相似文献   

6.
Sex-specific sequence variability of the amelogenin gene had been observed in a variety of mammalian species. In our study, the suitability of the amelogenin gene for sex determination in different species of the family Bovidae was examined. Based on a sequence insertion/deletion characteristic for X- and Y-specific amelogenin (AMELX and AMELY), PCR amplification on male and female genomic DNA from domestic and wild bovine species, sheep and goat, consistently displayed a sex-specific pattern. Thus, the amelogenin amplification by PCR proved to be a reliable method for sex determination not only in domestic and wild species of the tribe Bovini, but also in the related species sheep and goat. Sex determination using the amelogenin-based assay can be performed with at least 40 pg of genomic DNA. The assay enables the investigation of small amounts of DNA from meat, hair, bones, and embryo biopsies to identify species and sex for a number of applications in animal production, forensics, population research, and monitoring within the family Bovidae. Sequence comparison of the amplified amelogenin gene region specific for male and female animals from domestic and wild bovide species revealed further sequence variations within and between sexes as well as between species. Sequence variations in the AMELX gene can be applied to discriminate Bos and Bison individuals from other bovine species, and also from sheep and goat.  相似文献   

7.
There are ten nucleolus organizer regions (NORs) in domestic sheep (Ovis aries L.). cattle (Bos taurus L.), goat (Capra hircus L.) and aoudad (Ammotragus lervia Blyth) and these are located terminally on chromosomes with homologous (G-banding patterns. The similarity in number of nucleolus organizer regions in these species may indicate that their ribosomal DNA regions are infrequently involved in exchange events which could lead to different numbers of active nucleolus organizer regions. Other possible explanations of the conservation of number of nucleolus organizer regions in these species are discussed. The homology of NOR location in these species supports the idea that the Bovidae karyotype tends to be fairly stable apart from changes due to centric fusion events.  相似文献   

8.
In this study, we investigated repetitive sequences localized on Y chromosomes. Repetitive DNA sequences represent a substantial part of the eukaryotic genome and, among them, a large portion comprises sequences repeated in tandem. Efficient and rapid isolation of repeat units is possible due to a laser microdissection technique used for Y chromosome separation, followed by polymerase chain reaction (PCR), cloning, and sequence analysis. We applied the derived repeat units to members of nine tribes within the Bovidae. Apart from the Y chromosomes of Bos taurus and Bubalus bubalis, where we used known sequences of repetition, the derived sequences were used as probes for fluorescent in situ cross-hybridization to members of the nine tribes of the Bovidae. We investigated the distribution of repeat units within the tribes and their localization on the Y chromosome. Sharing of sequence variants would indicate common descent, while the rapid horizontal evolution should allow discrimination between closely related species or subspecies.  相似文献   

9.
The major ribosomal DNA (rDNA) loci were localized on meiotic and mitotic chromosomes and in interphase nuclei of 18 ground-beetle species belonging to three tribes of the supertribe Carabitae by fluorescence in situ hybridization (FISH), using a PCR-amplified 18S rDNA as a probe. Meiotic observations indicate that the 18S rDNA sequences are located on the largest autosomal bivalent in 12 species of Carabus , two species of Calosoma (both genera belonging to the tribe Carabini), and three sibling species of Ceroglossus chilensis (tribe Ceroglossini). The data suggest the occurrence of a conservative pattern in these three genera despite the chromosomal rearrangements that have led to karyotypes with higher chromosome numbers in Ceroglossus . A different result is found in Cychrus caraboides (tribe Cychrini), where ribosomal cistrons are located in two medium-sized autosomal pairs. Further species of Cychrini should be studied for corroborating the occurrence of molecular and karyotypical apomorphies in Cychrus with regard to the genera Carabus, Calosoma and Ceroglossus .  相似文献   

10.
The Eurasian common shrew (Sorex araneus L.) is characterized by spectacular chromosomal variation, both autosomal variation of the Robertsonian type and an XX/XY(1)Y(2) system of sex determination. It is an important mammalian model of chromosomal and genome evolution as it is one of the few species with a complete genome sequence. Here we generate a high-precision cytological recombination map for the species, the third such map produced in mammals, following those for humans and house mice. We prepared synaptonemal complex (SC) spreads of meiotic chromosomes from 638 spermatocytes of 22 males of nine different Robertsonian karyotypes, identifying each autosome arm by differential DAPI staining. Altogether we mapped 13,983 recombination sites along 7095 individual autosomes, using immunolocalization of MLH1, a mismatch repair protein marking recombination sites. We estimated the total recombination length of the shrew genome as 1145 cM. The majority of bivalents showed a high recombination frequency near the telomeres and a low frequency near the centromeres. The distances between MLH1 foci were consistent with crossover interference both within chromosome arms and across the centromere in metacentric bivalents. The pattern of recombination along a chromosome arm was a function of its length, interference, and centromere and telomere effects. The specific DNA sequence must also be important because chromosome arms of the same length differed substantially in their recombination pattern. These features of recombination show great similarity with humans and mice and suggest generality among mammals. However, contrary to a widespread perception, the metacentric bivalent tu usually lacked an MLH1 focus on one of its chromosome arms, arguing against a minimum requirement of one chiasma per chromosome arm for correct segregation. With regard to autosomal chromosomal variation, the chromosomes showing Robertsonian polymorphism display MLH1 foci that become increasingly distal when comparing acrocentric homozygotes, heterozygotes, and metacentric homozygotes. Within the sex trivalent XY(1)Y(2), the autosomal part of the complex behaves similarly to other autosomes.  相似文献   

11.
The Cervidae show the largest variation in chromosome number found within any mammalian family. The eight species of deer which are the subject of this study vary in chromosome number from 2n = 70 to 2n = 6. Three species of Bovidae are also included since they belong to a closely related family. Digestion of nuclear DNAs with the restriction endonucleases Hae III, Hpa II, Msp I, Eco RI, Xba I, Pst I and Bam HI reveals that there is a series of highly repetitive sequences forming similar band patterns in the different species. There are two bands (1100 and 550 base pairs) which are common to all species although the two families separated more than 40 million years ago. To obtain information on the degree of homology among these conserved sequences we isolated a Bam HI restriction fragment of approximately 770 base pairs from red deer DNA. This sequence was 32P labeled and hybridized by the Southern blot technique with DNAs cleaved with Bam HI, Eco RI, Hpa II and Msp I. Moreover, the same sequence was cloned in the plasmid vector pBR322 nick translated with 32P and hybridized with the DNAs of 8 species of Cervidae and 3 of Bovidae. The same cloned probe was labeled with 3H and hybridized in situ with the metaphase chromosomes of red deer (2n = 68) and Muntiacus muntjak (2n = 7 male). Homologies are still present between the highly repetitive sequences of the 8 species of Cervidae despite the drastic reorganization that led to extreme chromosome numbers. Moreover, the cloned DNA sequence was found to occupy the same position, in the proximal regions of the arms, in both red deer (2n = 68) and M. muntjak (2n = 7 male) chromosomes. The ribosomal RNA genes and the centromeres in these species have also maintained their main territory despite the drastic chromosome reorganization. These results are experimental confirmation of the chromosome field theory which predicted that each DNA sequence has an optimal territory within the centromere-telomere field and tends to occupy this same territory following chromosome reorganization.  相似文献   

12.
The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.  相似文献   

13.
By using three gene probes, one derived from the porcine major histocompatibility complex (MHC) and two from bovine cytokeratin genes, type I (KRTA) and type II (KRTB), the hypothesis of conservation of genome structure in two members of the family Bovidae was examined. Gene mapping data revealed the MHC to be in chromosome region 23q15----q23 in cattle (BOLA) and 20q15----q23 in sheep (OLA). KRTA was localized to chromosome region 19q25----q29 in cattle and 11q25----q29 in sheep and KRTB to 5q14----q22 in cattle and 3q14----q22 in sheep. The banding patterns of the chromosome arms to which the loci were assigned were identical in both species. Moreover, the resemblances of GTG- or QFQ-banding patterns between the cattle and sheep karyotypes illustrated further chromosome homologies. These studies, based on gene mapping comparisons and comparative cytogenetics, document that within bovid chromosomes, homology of banding patterns corresponds to a homologous genetic structure. Hence, we propose that gene assignments on identified chromosomal segments in one species of the Bovidae can be extrapolated, in general, to other bovid species based on the banding homologies presented here.  相似文献   

14.
Sixty autosomal loci (5 type I and 55 type II) from 24 bovine syntenic groups, and previously FISH-mapped to goat and river buffalo chromosomes, were localized by fluorescence in situ on sheep (OVIS ARIES, 2n = 54) chromosomes, thereby notably extending the cytogenetic map of this economically important species. Caprine BAC clones were hybridized to R-banded chromosome preparations. FITC-signals and RBPI- banding (R-banding by late BrdU-incorporation and propidium iodide staining) were simultaneously visualized and captured by a colour CCD-camera. All mapped loci were localized on homoeologous chromosomes and chromosome regions (bands) of sheep, goat and river buffalo, further supporting chromosome and genetic (loci) homoeologies among bovids.  相似文献   

15.
Forty autosomal type I loci earlier mapped in goat were comparatively FISH mapped on river buffalo (BBU) and sheep (OAR) chromosomes, noticeably extending the physical map in these two economically important bovids. All loci map on homoeologous chromosomes and chromosome bands, with the exception of COL9A1 mapping on BBU10 (homoeologous to cattle/goat chromosome 9) and OAR9 (homoeologous to cattle/goat chromosome 14). A FISH mapping control with COL9A1 on both cattle and goat chromosomes gave the same results as those obtained in river buffalo and sheep, respectively. Direct G- and R-banding comparisons between Bovinae (cattle and river buffalo) and Caprinae (sheep and goat) chromosomes 9 and 14 confirmed that a simple translocation of a small pericentromeric region occurred between the two chromosomes. Comparisons between physical maps obtained in river buffalo and sheep with those reported in sixteen human chromosomes revealed complex chromosome rearrangements (mainly translocations and inversions) differentiating bovids (Artiodactyls) from humans (Primates).  相似文献   

16.
Banded karyotypes of 50 species belonging to 23 genera were analyzed. The diploid chromosome numbers ranged from 26 to 50. For karyotypic comparison we used a 44 chromosomes karyotype, consisting of 4 metacentric and 17 acrocentric autosomes, as “basic karyotype”. Almost all of its 25 autosomal arms could be identified in each individual karyotype. In 8 chromosomes, i. e. 1/2, 7, 11, 12, 13, 15, 23 and X, small inversions were detected. As a result, each of the chromosomes mentioned occurs in two states which differ slightly in their banding patterns. These were used as character states in the cladistic analysis together with other chromosomal rearrangements. The implications drawn from the cladogram obtained are: The Miniopterinae clearly belong to the Vespertilionidae but are the first to branch off from the common stem. The tribe Myotini should be raised to the rank of a subfamily. Within the largest subfamily Vespertilioninae, one autapomorphic chromosomal character was found for each of the tribes Vespertilionini and Pipistrellini. In addition, both tribes are distinguished from the other Vespertilioninae tribes by two synapomorphic features. These results allow for the first time an unequivocal classification of the systematically difficult “pipistrelloid” species. The species of the genus Pipistrellus (sensu Hill and Harrison 1987) are spread over the Pipistrelllni and Vespertilionini. We therefore suggest the splitting of this heterogenous genus into at least four genera. Only the members of the previous subgenus Pipistrellus constitute the genus Pipistrellus and belong to the Pipistrellini. The previous subgenera Hypsugo, Vespadelus and Falsistrellus, given generic rank in some recent studies, belong to the tribe Vespertilionini and are not closely related to Pipistrellus. For the genera Eptesicus and Hesperoptenus, which belong neither to the Vespertilionini nor to the Pipistrellini, the tribe Eptesicini was established. The phylogenetic relations of this tribe and the status of the presumably polyphyletic tribe “Nycticeiini” could not be solved.  相似文献   

17.
A male dwarf blue sheep was collected 60 km south of Batang east to the Jinsha Jiang river, and a male Subei blue sheep (Greater form) was collected from Gansu, China, representing two geographically separated blue sheep forms. Chromosome preparations were prepared from fibroblast cultures. The dwarf blue sheep has a 2n = 54 and a karyotype with three biarmed formations that resulted from acrocentric chromosome fusions (based on the 2n = 60 Capra autosomal equivalents) 14p/5q, 27p/1q, and 29p/2q from the largest to the smallest biarmed chromosome, respectively. The 14p/5q fusion is metacentric, whereas the 27p/1q and 29p/2q are submetacentric. The Subei blue sheep had a 2n = 56, with only the 27p/1q and 29p/2q biarmed chromosome fusions. The remainder of the chromosomes in both blue sheep are acrocentric; the X is the largest acrocentric chromosome and the Y is a minute biarmed chromosome. Our observation is one evidence showing that chromosome evolution within blue sheep has followed a series of centric fusions resulting in the reduction of chromosome number, which is typical of all extant genera within the tribe Caprini.  相似文献   

18.
Supernumerary (B) chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH) is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.  相似文献   

19.
Fluorescence in situ hybridization (FISH) using a probe to the male-specific GH-Y (growth hormone pseudogene) was used to identify the Y chromosome in the karyotypes of chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha). The sex chromosome pair is a small acrocentric chromosome pair in chum salmon and the smallest metacentric chromosome pair in pink salmon. Both of these chromosome pairs are morphologically different from the sex chromosome pairs in chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch). The 5S rRNA genes are on multiple chromosome pairs including the sex chromosome pair in chum salmon, but at the centromeres of two autosomal metacentric pairs in pink salmon. The sex chromosome pairs and the chromosomal locations of the 5S rDNA appear to be different in all five of the North American Pacific salmon species and rainbow trout. The implications of these results for evolution of sex chromosomes in salmonids are discussed.  相似文献   

20.
Comparative chromosome painting with individual human chromosome-specific libraries (CSLs) on cattle metaphase chromosomes delineated 46 homologous chromosomal segments between the two species. Continuous arrangement of these segments on individual cattle chromosomes demonstrates a nearly complete coverage of the bovine karyotype and shows physical boundaries of bovine chromosomal segments homologous to individual human chromosomes. Alignment of the available comparative gene mapping data with the homologous segments strongly supports the detected gross homologies between the karyotypes of the two species. In addition to cattle, four human CSLs were hybridized to sheep metaphase chromosomes also, to further verify the known karyotype homology within the Bovidae. Besides its application to karyotype evolution research, the comparative knowledge provides for rapid expansion of the much needed Type I locus-based bovine gene map. Received: 9 September 1995 / Accepted: 4 December 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号